Matlab一种基于BP算法学习的小波神经网络-abbr_43dec04840a6f2a5444e6a4b8615c64a.rar 一种基于BP算法学习的小波神经网络,网络隐层采用框架小波函数、输出层采用Sigmoid 激励函数, 并选用“熵误差函数”以加速网络的学习速度
2021-10-27 10:30:22 1KB matlab
1
小波神经网络模式识别 小波神经网络模式识别
2021-10-21 16:05:47 9KB 小波神经网络模式识别
1
小波神经网络的matlab代码,亲自测试过可用
2021-10-17 20:23:22 4KB 小波 神经网络 matlab
1
遗传算法优化BP神经网络分为BP神经网络结构确定、遗传算法优化和BP神经网络预测3个部分。其中,BP神经网络结构确定部分根据拟合函数输入输出参数个数确定,进而确定遗传算法个体的长度。遗传算法优化使用遗传算法来优化BP神经网络的权值和阈值,种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度值,遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初试权值和阈值赋值,网络经训练后预测函数输出。 作者:眀滒玩闹 链接:https://www.jianshu.com/p/af3398abbb28 来源:简书 简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
2021-10-10 16:28:05 39KB
1
本文件包含基本GA程序,小波神经网络程序,GA优化的小波神经网络程序
2021-10-10 15:43:13 33KB MATLAB
1
基于小波神经网络的沉降预测软件开发与应用.pdf
小波神经网络的时间序列预测-短时交通流量预测(matlab实现),包含源代码和测试数据
一种预测程序,比较简单,是基于BP神经网络的一种,小波函数在最后,可以换,是紧致型的
2021-08-23 13:55:39 62KB 小波神经
1
内容推荐 预测是作决策、规划之前的必不可少的重要环节 ,是科学决 策、规划的重要前提。混沌时间序列预测是预测领域 内的一个重 要研究方向。基于小波和人工神经网络的混沌时间序 列预测研究 是近几年来的研究热点,受到了特别的重视。小波神 经网络是结 合小波变换理论与人工神经网络的思想而构造的一种 新的神经网 络模型,它结合了小波变换良好的时频局域化性质及 神经网络的 自学习功能,因而具有较强的逼近能力和容错能力。 自从小波神 经网络被提出以后,它在非线性函数或信号逼近、信 号表示和分 类、系统辨识和动态建模、非平稳时间序列预测与分 析等许多领域 中被较为广泛地应用。尽管如此,将小波和人工神经 网络理论应 用到预测还有许多不尽如人意和有待进一步研究的地 方,还有很 大的研究余地。姜爱萍编著的《混沌时间序列的小波 神经网络预测方法及其优化研究》对此进行了深入分 析和研究,主要研究了小 波神经网络的构造、学习和优化以及小波神经网络在 混沌时间序 列预测中的应用,构建了适应于混沌时间序列短期预 测的模型,并 将其应用于中国股票价格预测。《混沌时间序列的小 波神经网络预测方法及其优化研究》主要研究成果与 创新点分述 如下: (1)用混沌理论及其分析方法对非线性时间序 列进行了研 究,为混沌时间序列的短期预测性提供了理论基础。 并以上证综 合指数为例,通过对其进行相空间重构,反映了股指 序列具有吸引 子结构。同时,对股指序列进行了确定性检验,求取 最大李雅普诺 夫指数。根据最大李雅普诺夫指数,确定了上证综合 指数序列具 有混沌特性,这为探求股指变化规律和正确建立其短 期预测模型 奠定了基础。 (2)从小波神经网络构造理论出发,详细介绍 了小波神经网 络的数学基础和性质,对目前广泛应用的四种小波神 经网络的结 构进行了深入分析,根据网络算法、逼近细节能力、 包含频域信息 广等方面因素,提出多分辨小波神经网络更适合混沌 时间序列预 测,因为多分辨小波神经网络既能逼近混沌时间序列 的整体变化 趋势,又能捕捉细节的变化。 (3)利用相空间重构技术,把消噪后得到的状 态矢量作为多 分辨小波神经网络的多维输入,构建了多维多分辨小 波神经网络 预测模型,将其应用于混沌时间序列预测,并给出了 实现方法。针 对多分辨小波神经网络提出了BP和多分辨率学习组合 算法,解 决了传统学习算法网络隐层节点数难以确定的问题, 克服了BP 网络单尺度学习算法很难学习复杂的时间序列的不足 。以上证综 合指数为例,分别采用具有相同结构的MRA—WNN和 RBF_ VJNN预测模型对股价时序进行预测,仿真结果表明, 多分辨小波 神经网络具有较高的预测精度。 (4)给出了小波神经网络的优化的两类非单调 的方法。一类 是非单调的滤子方法,并且证明了该算法是全局收敛 到一阶临界 点。这个算法不同于传统的滤子信赖域方法,因为它 使用了试探 步的切向和法向的分解;也不同于Gould提出的非单 调方法,因为 本书提出的非单调性更为松弛。这使得在不引入二阶 校正步的情 况下改进了滤子方法。同时也不再定义支配区域的边 界,而直接 使用面积,这样也相应简化了算法。另一类是非单调 的无罚函数 方法,该方法利用非单调线搜索和对于约束违反度函 数的可行性 恢复阶段来达到目标函数和约束违反度函数之间的平 衡,而非单 调的方法在M一1时是等价于单调方法的,非单调方法 从M步看 来仍然是单调的。当然,在这种方法中,也可以采用 试探步分解的 技术,然后利用滤子来做接受性的检验。进一步地, 我们还可以将 非单调的滤子方法推广到一般的约束最小化问题之中 ,数值结果 表明这种方法也是可执行的且是有效的,并用此两种 方法作为训 练小波神经网络的优化新算法。 (5)提出将无罚函数方法与非线性互补问题相 结合用于小波 神经网络的优化,将互补问题转化为约束优化问题, 应用约束优化 问题的策略和技巧对其求解,融入无罚函数的概念, 并得到了算法 的收敛性。同时,其数值结果也表明这类算法和同类 的其他方法 比起来更为灵活,且具有更好的数值效果。 (6)提出基于修正的SQP滤子方法的小波神经网 络的优化, 修正了序列二次规划子问题,使得二次规划子问题在 每个迭代处 总是可解的,同时不用线搜索,提出了修正的滤子方 法。另外,引 入积极集策略,减小运算量。当第一次得到的搜索方 向不被滤子 接受时,不是直接舍弃它,而是转而以这个方向为基 础,构造另一 个可行下降的搜索方向。并在此基础上加入了线搜索 ,得到了带 线搜索的滤子方法,其数值结果也说明基于修正的 SQP滤子方法 的小波神经网络的优化是有效的。 (7)提出基于新的无罚函数方法的小波神经网 络的优化
2021-08-22 11:53:02 18.3MB 时间序列 小波神经网络
1