针对K-means算法因随机选取聚类中心而易造成聚类结果不稳定的问题,提出PCA-KDKM算法。该算法使用主成分分析法对数据集的属性降维,提取主属性;利用k′dist曲线自动获取k值;计算平缓曲线上所含数据对象的均值并选取其中一值,作为首个初始聚类中心;利用基于密度和最大最小距离的算法思想进行聚类;结合类间距离和类内聚类提出聚类质量评价函数。将该算法与K-means、KNE-KM、QMC-KM、CFSFDP-KM在UCI数据集上进行聚类比较,结果表明该算法聚类结果稳定,聚类准确率高。将PCA-KDKM算法应用在微博舆情分析中,抓取不同类别的数万条数据进行聚类分析。实验结果表明,PCA-KDKM算法在微博舆情分析中有更高的准确性和稳定性,有利于及时发现热点舆情。
1