机器学习系列6 使用Scikit-learn构建回归模型:简单线性回归、多项式回归与多元线性回归
2022-07-03 16:47:43 62KB scikit-learn 回归 机器学习 线性回归
1
针对星空背景下卫星跟踪中运动小目标与伪目标交会造成的跟踪漂移问题, 提出一种基于多域卷积神经网络(MDNet)与自回归(AR)模型的空中小目标自适应跟踪方法。 对用MDNet采集到的图像序列第1帧的正样本进行bounding-box回归模型训练; 再训练用最小信息准则和最小二乘法确定阶数和参数的AR模型, 估计目标运动轨迹并预测目标位置; 最后, 将该目标位置作为MDNet的采样中心, 约束采样候选区域, 用bounding-box回归模型调整目标位置。 实验用8种跟踪方法测试了8组场景复杂的视频序列, 结果表明, 本文方法的成功率及平均覆盖率均显著高于其他7种典型算法, 具有较高的精确性和稳健性。
2022-06-29 17:50:48 11.18MB 机器视觉 小目标跟 多域卷积 自回归模
1
海宁陆地面积接近七百平方千米,是典范的江南水乡,海宁地理位置处于长江三角洲南冀,浙江省的北部。海宁被外界誉为“中国皮革之都”,在全国范围内,是重要的皮革生产基地和集散中心。同时海宁拥有总建筑面积达45万平方米的皮草专业市场——海宁中国皮革城[1]。 海宁皮草的产业范围、工艺技术、主要经济指标和知名品牌数目均居海内前线,此中皮草服装产量、皮草交易量、皮草服装外贸出口供货值三项均列全国第一[5]。由于海宁中国皮革城的存在,在多年以前皮草业就是海宁的热门产业,不仅有各种中大型企业的建立,许许多多的自产自销个体经营户也如雨后春笋般加入到皮草业的大军中来。在海宁,平均3秒就能生产一只票夹[2];平均48秒制成一组牛皮革沙发套[2];平均1.3秒诞生一件皮衣[2]。皮草皮革产业是海宁的传统优势产业,也是海宁重要的区域特色产业[2]。
本文建立了带有删失因变量的模型中的回归变量不必限制于标准渐近结果的应用。 因此,随观察指数单调增长的回归变量是可以接受的。 它也旨在为回归变量的增长速度提供一个上限。
2022-06-14 09:08:57 55KB 论文研究
1
一维神经网络 非线性回归模型在一维卷积神经网络中的应用
2022-06-10 16:05:14 72KB 卷积神经网络
代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能力 代码代码 基于Logistic回归模型评估企业还款能
2022-06-04 18:06:44 9KB 回归 文档资料 数据挖掘 人工智能
代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回归模型评估企业还款能力代码代码 基于Logistic回
2022-06-04 18:06:43 9KB 回归 文档资料 数据挖掘 人工智能
空气质量预测 近年来,空气污染急剧增加,并且对所有生物造成的影响更糟。 世界上大多数国家都在与日益增加的空气污染水平作斗争。 因此,控制和预测空气质量指数已成为必要。 在此研究项目中,我们将实施数据挖掘和机器学习模型来预测AQI并将AQI归类。 对于AQI预测,我们已经实现了五个回归模型主成分,偏最小二乘法,留一维CV的主成分,留一维CV的偏最小二乘,多个印度城市的多元回归AQI数据。 根据AQI的值,AQI指数进一步分为6个不同的类别,即“好,满意,中,差,非常差和严重”。 为了预测AQI桶,我们使用重复CV分类算法开发了三种分类模型,分别是多项式Lo​​gistic回归和K最近邻和K最近邻。 来自印度不同城市的空气质量数据集,具有留一法交叉验证的PLS模型。
2022-05-30 17:02:47 11KB R
1
matlab卷积神经网络训练(回归模型
2022-05-28 19:07:09 3KB matlab cnn 回归 综合资源