提出一种基于二维经验模态分解(BEMD)的合成孔径雷达(SAR)目标识别方法。BEMD可以从原始SAR图像提取多层次的二维固态模函数(BIMF),它们可以更好地描述目标的细节信息,因此联合原始SAR图像及其多层次BIMF,可以为后续的分类决策提供更多有益信息。采用支持向量机(SVM)对原始SAR图像以及各个层次的BIMF进行决策,然后基于Bayesian理论对各个SVM输出的结果进行有效融合,从而获得更为稳健的识别结果。基于MSTAR数据集设置几种典型的实验条件,对本文方法进行性能测试,结果验证本文方法相比几类现有SAR目标识别方法更具有性能优势。
1