以太网交换网络中为了进行链路备份,提高网络可靠性,通常会使用冗余链路。但是 使用冗余链路会在交换网络上产生环路,并导致广播风暴以及MAC地址表不稳定等故 障现象,从而导致用户通信质量较差,甚至通信中断。为解决交换网络中的环路问 题,提出了生成树协议STP(Spanning Tree Protocol)。
2022-04-19 18:06:49 433KB 华为 NE05E NE08E 环路检测
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:CarrLoop_QuantiTh_TrackErr_-20dB_10Hz(3阶环路)_NoQ._matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-19 09:06:18 55KB matlab 开发语言 NoQ 达摩老生出品
华为 NE05E&NE08E V300R003C10SPC500 特性描述 - 环路检测
2022-04-18 13:04:11 334KB 华为 NE05E NE08E 环路检测
ON-bright开关电源环路计算与设计,包含以反激为例的开关电源环路分析和环路补偿,还有一个机遇OB2263的12W电源环路设计实例展示
2022-04-16 13:35:10 5.82MB 电源环路设计
1
无需外接任何元件即可实现4-20mA或0-20mA电流环路信号隔离器,产品有PCB板上安装的IC封装、DIN35标准导轨安装和PIM面板嵌入式安装方式。 DIN导轨式安装方式可实现信号一进一出、二进二出、三进三出等多路隔离传输功能
2022-04-06 00:17:16 374KB 4-20mA电流环路两线无源型信
1
电源环路设计领域的经典文章,Intersil专家写的.
2022-04-01 09:57:11 208KB 电源设计 环路 补偿网络
1
使用光纤延迟环路在远距离OFDR中进行激光相位噪声补偿
2022-03-19 15:39:26 1.12MB 研究论文
1
本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。
2022-02-26 19:29:31 770KB 环路 稳定性 基础
1
电路功能与优势 本电路在精密热电偶温度监控应用中使用 ADuCM360精密模拟微控制器,并相应地控制4 mA至20 mA的输出电流。 ADuCM360 集成双通道24位∑-△型模数转换器(ADC)、双通 道可编程电流源、12位数模转换器(DAC)、1.2 V内置基准电压源以及ARM Cortex-M3内核、126 KB闪存、8 KB SRAM和各种数字外设,例如UART、定时器、SPI和I2C接口。 在该电路中, ADuCM360连接到一个T型热电偶和一个100铂电阻温度检测器(RTD)。RTD用于冷结补偿。低功耗Cortex-M3内核将ADC读数转换为实际温度值。支持的T型温度范围是−200°C至+350°C,而此温度范围所对应的输出电流范围是4 mA至20 mA。 该电路为热电偶测量提供了完整的解决方案,所需外部元件极少,并且可针对高达28 V的环路电压采用环路供电。 电路描述 本应用中用到ADuCM360的下列特性: 12位DAC输出及其灵活的片内输出缓冲器用于控制外部NPN晶体管BC548。通过控制此晶体管的VBE电压,可将经过47Ω负载电阻的电流设置为所需的值。 DAC为12位单调式,但其输出精度通常在3 LSB左右。此外,双极性晶体管引入了线性误差。为提高DAC输出的精度并消除失调和增益端点误差,ADC0会测量反馈电压,从而反映负载电阻(RLOAD)两端的电压。根据此ADC0读数,DAC输出将通过源代码纠正。这样就针对4 mA至20 mA的输出提供了±0.5°C的精度。 24位Σ-Δ 型ADC内置PGA,在软件中为热电偶和RTD设置32的增益。ADC1在热电偶与RTD电压采样之间连续切换。 可编程激励电流源驱动受控电流流过RTD。双通道电流源可在0μA至2 mA范围内以一定的阶跃进行配置。本例使用200μA设置,以便将RTD自热效应引起的误差降至 最小。 ADuCM360中的ADC内置了1.2 V基准电压源。内部基准 电压源精度高,适合测量热电偶电压。 ADuCM360中ADC的外部基准电压源。测量RTD电阻 时,我们采用比率式设置,将一个外部基准电阻(RREF)连接在外部VREF+和VREF−引脚上。由于该电路中的基准电压源为高阻抗,因此需要使能片内基准电压输入缓冲器。片内基准电压缓冲器意味着无需外部缓冲器即可将输入泄漏影响降至最低。 偏置电压发生器(VBIAS)。VBIAS功能用于将热电偶共 模电压设置为AVDD/2 (900 mV)。同样,这样便无需外部电阻,便可以设置热电偶共模电压。 ARM Cortex-M3内核。功能强大的32位ARM内核集成了126 KB闪存和8 KBSRAM存储器,用来运行用户代码,可配置和控制ADC,并利用ADC将热电偶和RTD输入转 换为最终的温度值。它还可以利用来自AIN9电压电平 的闭环反馈控制并持续监控DAC输出。出于额外调试目 的,它还可以控制UART/USB接口上的通信。 UART用作与PC主机的通信接口。这用于对片内闪存进 行编程。它还可作为调试端口,用于校准DAC和ADC。 两个外部开关用来强制该器件进入闪存引导模式。使 SD处于低电平,同时切换RESET按钮, ADuCM360将进 入引导模式,而不是正常的用户模式。在引导模式下, 通过UART接口可以对内部闪存重新编程。 J1连接器是一个8引脚双列直插式连接器,与CN0300支 持硬件随附的USB-SWD/UART板相连。配合J-Link-Lite 板可对此应用电路板进行编程和调试。参见图3。 热电偶和RTD产生的信号均非常小,因此需要使用可编程增益放大器(PGA)来放大这些信号。 本应用使用的热电偶为T型(铜-康铜),其温度范围为−200°C至+350°C,灵敏度约为40ΩV/°C,这意味着ADC在双极性模式和32倍PGA增益设置下可以覆盖热电偶的整个温度范围。 RTD用于冷结补偿。本电路使用的RTD为100Ω铂RTD,型号为Enercorp PCS 1.1503.1。它采用0805表贴封装,温度变化率为0.385 Ω/°C。 注意,基准电阻RREF必须为精密5.6 kΩ (±0.1%)电阻。 本电路必须构建在具有较大面积接地层的多层电路板(PCB)上。为实现最佳性能,必须采用适当的布局、接地和去耦技术(请参考 指南MT-031——“实现数据转换器的接 地并解开AGND和DGND的谜团”、指南MT-101——“去耦 技术”以及 ADuCM360TCZ评估板布局)。 附件内容包括: 电路设计原理图和PCB的PDF档; gerber文件和材料清单; 电路笔记CN-0300;
1
闭环系统环路增益的仿真测量 第*页
2022-02-17 17:39:49 11.59MB IC
1