基于DTC_SVM的PMSM无速度传感器控制的研究 基于DTC_SVM的PMSM无速度传感器控制的研究
1
使用CNN的作者身份归属 给定某些作者提供的一组文档,请使用CNN正确标识其作者。 项目概况 我将使用卷积神经网络(CNN)进行文本分类。 我的项目的主要思想是对博客进行分类,因为某些作者正确地对博客进行了分类。 我还将把它与最先进的机器学习方法进行作者归因。 问题正在调查中 我要在此项目中解决的问题是作者身份归属。 出资归属是指给定一组作者提供的一组文档,然后创建一个系统,该系统在给定新的看不见的文档的情况下能够告诉该文档的原始作者。 这些系统如今已变得非常流行。 使用此类系统的一项重要技术是识别有争议的文件。 当两个或两个以上的人要求特定文件的作者身份时,就会出现此问题。 另一个讽刺意味是
1
Libsvm的下载、安装和使用(《Learn SVM Step by Step》by faruto2011系列视频-应用篇.rar )
2022-03-30 16:56:44 308KB SVM
1
结合自己编matlab 程序,还有在实际操作中的应用,最全的matlab的svm程序
2022-03-30 15:53:28 8.29MB matlab svm
1
基于HOG特征的人头检测及其跟踪和人数统计
2022-03-30 09:05:44 11KB HOG,人头
1
提出了一种神经网络的SVM(支持向量机)呼吸音识别算法,将通过小波分析得到的呼吸音特征输入神经网络,作为SVM方法的特征输入,对训练样本进行训练,再对测试样本进行分类识别。对于呼吸音反映的3种状态(正常、轻度病变和重度病变)进行了识别,同时与K最近邻(KNN)方法进行比较。实验结果表明,SVM方法具有较高的识别精度,能够对呼吸音状态进行识别,同时在此领域也验证了在神经网络方法中无法避免的局部极值问题。提示基于 SVM 方法的神经网络呼吸音识别算法有较好的精度,可为身体局域网技术提供信息处理的有效算法。
1
这是一个经典的基于matlab的支持向量机算法,包括数据预处理、模型计算、模型预测等,简单易懂。
2022-03-29 22:07:31 368KB SVM
1
svm支持向量机原理的介绍以及方法的应用。
2022-03-29 11:53:41 80KB svm 结构最小化
1
svm-gpu 适用于带GPU的多类支持向量机(SVM)库。 这是一种快速且可靠的分类算法,在有限的数据量下性能很好。 支持向量机 : 支持向量机是有监督的学习模型,可以分析数据并识别模式。 一个特殊的特性是,它们同时最小化了经验分类误差并最大化了几何余量。 因此,它们也被称为最大余量分类器。 支持向量机的优点是: 在高维空间有效。 在维数大于样本数的情况下仍然有效。 在决策函数中使用训练点的子集(称为支持向量),因此它也可以提高存储效率。 多功能:可以为决策功能指定不同的内核功能。 提供了通用内核,但是也可以指定自定义内核。 与神经网络相比,在有限数量的样本(数千个样本)中实现了更高的速度和更好的性能 支持向量机的缺点包括: 如果特征数量远大于样本数量,则在选择内核函数时应避免过度拟合,并且正则化项至关重要。 SVM不直接提供概率估计,而是使用昂贵的五重交叉验证来计
2022-03-29 11:08:04 113KB JupyterNotebook
1
内置麻雀搜索算法优化支持向量机的程序,还有麻雀搜索算法提出的原论文