基于卷积神经网络-双向长短期记忆网络结合注意力机制(CNN-BILSTM-Attention)回归预测,多变量输入模型。matlab代码,2020版本及以上。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-23 16:18:23 33KB 网络 网络 matlab
1
基于贝叶斯优化长短期记忆网络(bayes-LSTM)的时间序列预测,matlab代码,要求2019及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-21 11:41:42 24KB 网络 网络 matlab lstm
1
使用LSTM-ARIMA模型进行混合预测,ARIMA做线性部分的预测,LSTM做非线性部分
2024-02-20 11:24:47 5KB LSTM LSTM预测 arima 非线性模型
1
MATLAB开发的LSTM深度学习网络来预测时间序列的工具箱-支持单时间序列和多元时间序列的预测
2024-02-18 16:01:02 4.25MB lstm MATLAB 深度学习 长短期记忆网络
1
逻辑回归matlab代码预测PRNG 使用机器学习技术预测伪随机数生成器 要运行一个学习者的单个实例,请使用exampleKNN.m脚本(例如,运行KNN)。 要重新运行实验,请运行deployConfig.m。 我们总共实施了五名学习者: 随机抽样-按比例随机抽取训练集中标签的比例 随机森林-传统的随机森林算法,以固定深度生长自举树-预测由树预测的标签的模式 KNN(k最近邻)-从训练集中预测k最近邻标签的模式 朴素贝叶斯-假设给定标签的每个特征在条件上均独立于所有其他特征-通过在训练集中计数来学习概率,并根据未归一化的贝叶斯规则预测具有最高概率的标签 Logistic回归-传统的logistic回归分类器使用Barzilai Borwein方程对更新进行了梯度下降训练-预测每个输出最可能的标签 我们还实现或硬编码了几个伪随机数生成器(PRNG)。 除非另有说明,否则每一项我们都支持k = 2、3和5个标签的值。 Mercenne Twister-我们在Matlab内置的Mercenne Twister算法的默认实现中包装了一个函数。 线性同余生成器-我们已使用Borland C /
2024-02-16 11:00:22 359KB 系统开源
1
网球造型 网球建模资料库,用于我的硕士论文。 特别感谢Stratagem公司( )。 Stratagem的网球建模项目启发了该项目。 此项目中使用的某些功能是从其存储库中复制的。 在使用Stratagem代码的文件中,您可以在页面顶部找到“(c)Stratagem”。
2024-02-05 19:21:09 8.91MB Python
1
主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型
2024-02-02 19:52:52 29KB 神经网络 matlab
1
温度预测 python 确保你的Python环境中有正确安装了scikit-learn库后,即可成功导入LinearRegression模块,并进行温度预测。 安装scikit-learn库: 打开终端或命令提示符,运行 pip install scikit-learn 如果使用的是Anaconda环境,可以使用conda来安装scikit-learn。在终端或命令提示符中运行 conda install scikit-learn。
2024-02-02 08:28:20 529B python 温度预测
1
基于自然语言处理的法律判决预测系统的设计与实现_刘欢.caj
2024-02-01 19:28:30 3.61MB
1
粒子群算法(PSO)优化极限梯度提升树XGBoost时间序列预测,PSO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-31 18:40:27 54.69MB
1