矩阵分解已经成为统计学的核心技术(Banerjee和Roy, 2014;、优化(Gill et al., 2021)、机器学习(Goodfellow et al., 2016);而深度学习在很大程度上是由于反向传播算法在拟合神经网络和低秩神经网络在高效深度学习中的发展。本调查的唯一目的是对数值线性代数和矩阵分析中的概念和数学工具进行一个完整的介绍,以便在后续章节中无缝地介绍矩阵分解技术及其应用。然而,我们清楚地认识到,我们无法涵盖所有关于矩阵分解的有用和有趣的结果,并且给出了这种讨论的范围的缺乏,例如,欧氏空间、厄米特空间和希尔伯特空间的分离分析。我们建议读者参考线性代数领域的文献,以获得相关领域的更详细介绍。一些优秀的例子包括(Householder, 2006; Trefethen and Bau III, 1997; Strang, 2009; Stewart, 2000; Gentle, 2007; Higham, 2002; Quarteroni et al., 2010; Golub and Van Loan, 2013; Beck, 2017; Gallier and Quaintance, 2017; Boyd and Vandenberghe, 2018; Strang, 2019; van de Geijn and Myers, 2020; Strang, 2021)
2022-01-14 09:20:08
3.12MB
矩阵分解
1