使用深度卷积网络的单导ECG信号采集和分类 使用深度学习的单导联心电信号采集和心律不齐分类 团队成员: , , 该项目包含两个部分, 心电信号捕获 心律失常分类所获得的心电图信号。 档案 :此文件夹包含用于训练和测试深度学习算法的所有文件,并且此代码将用于对所采集的信号进行分类。 此文件夹中的代码是由Awni等人的出色团队StanfordML Group开发的。 我刚刚对其进行了修改,以与python3配合使用,并做了其他一些改动,以方便使用。 :用于四阶陷波滤波器的Aurdino代码,在计算机中显示ECG信号,计算瞬时BPM等。 (尚未测试):通过从串行监测器读取内容自动将获取的ECG信号创建文件,并将其转换为所需格式并进行分类的代码。 :Json文件,指定获取信号的已保存.mat文件的路径。 请根据您当前的工作目录更改此Json文件中的.mat文件的路径以进行测试 依存关系 关于ECG信号捕获:滤波器,放大器,其电路及其值 心电图(ECG)是使用放置在皮肤上的电极记录的心脏电活动的曲线图(电压与时间的关系图)。 这些电极检测到微小的电变化,这些电变化是在每个
2021-09-08 20:52:14 1.01MB arduino deep-learning tensorflow keras
1
涵盖此存储库中代码的详细教程: 该网络分为四个部分,并逐渐变得更加复杂。 第一部分是了解网络核心部分的最低要求。 它用于为一张图像着色。 一旦有了一些实验,我发现添加剩余的80%的网络变得更加容易。 在第二阶段(测试版)中,我开始使培训流程自动化。 在完整版中,我添加了预训练分类器的功能。 GAN版本不在本教程中。 这是一个实验版本,使用了一些新兴的图像着色最佳实践。 :popcorn: 注意:以下显示图像是精心挑选的。 大部分图像大部分是黑白图像,或浅褐色。 狭窄而简单的数据集通常会产生更好的结果。 安装 pip install keras tensorflow pillow h5py jupyter scikit-image git clone https://github.com/emilwallner/Coloring-greyscale-images cd Coloring-greyscale-images/ jupyter notebook 去做所需的笔记本,以“ .ipynb”结尾的文件。 要运行模型,请转到菜单,然后单击“单元格”>“全部运行” 对于GAN版本,
2021-09-08 18:01:46 5.78MB tutorial deep-learning tensorflow keras
1
代码与我的一篇介绍命令行参数的博客相呼应,包含了两个数据集以及几个py文件
2021-09-08 13:44:08 48.06MB 数据增强 keras
1
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow(2nd edition)
2021-09-08 09:21:37 27.57MB Machine Learning
1
keras-inception-resnet-v2 使用Keras的Inception-ResNet v2模型(带有权重文件) 在python 3.6下使用tensorflow-gpu==1.15.3和Keras==2.2.5进行了测试(尽管存在很多弃用警告,因为此代码是在TF 1.15之前编写的)。 层和命名遵循TF-slim的实现: : 消息 该实现已合并到keras.applications模块中! 在GitHub上安装最新版本的Keras并使用以下命令导入: from keras . applications . inception_resnet_v2 import InceptionResNetV2 , preprocess_input 用法 基本上与keras.applications.InceptionV3模型相同。 from inception_resnet
2021-09-07 22:20:13 45KB machine-learning deep-learning keras Python
1
Image-Super-Resolution, 在Keras中,超分辨率CNN的实现 Keras 2 中的图像超分辨率利用深度卷积网络实现Keras中图像超分辨率CNN的实现。还包含上述模型的模型,称为扩展超分辨率,Denoiseing自动编码器SRCNN优于上述模型。设置支持带有Theano和Tensorflo
2021-09-07 15:36:36 38.87MB 开源
1
非常简易的keras函数式(Functional)模型学习以LSTM为例构建多输入和多输出模型的完整实例,可以让新手完美掌握整个模型构建的流程
2021-09-07 08:43:38 3KB keras
1
动手使用Python进行元学习:使用Tensorflow使用一键式学习,MAML,爬行动物,Meta-SGD等进行学习学习
1
无规范化网络和SGD的Tensorflow实现-自适应梯度剪切 论文: : 原始代码: : 安装及使用 我建议使用Docker运行代码: docker build -t nfnets/imagenet:latest --build-arg USER_ID=$(id -u) --build-arg GROUP_ID=$(id -g) . 要在imagenet数据集上训练NFNet,请执行以下操作: docker run --rm -it --gpus all -v $(pwd):/tf -p 8889:8888 -p 6006:6006 nfnets/imagenet:latest python train.py --variant F0 --batch_size 4096 --num_epochs 360 请参阅train.py模块以获取更多参数。 预先训练的权重已转换为
1
图像字幕生成 InceptionV3-多层GRU(Keras和TensorFlow) 要求: Python 3.6 TensorFlow 1.13.1(安装tensorflow-1.13.1-cp36-cp36m-win_amd64.whl) 凯拉斯2.2.4 Joblib 1.0.1 Matplotlib 3.3.4 Open CV 4.5.1 熊猫1.1.5 Nltk 3.5 下载Flickr30k或MSCOCO数据集图像和标题。 训练模型的步骤: 克隆存储库以保留目录结构。 对于Flickr30k放在flickr30k图像文件夹或MSCOCO results_20130124.token和Flickr30k图像放captions_val2014.json和MSCOCO图像COCO-images文件夹中。 通过运行以下python keras2tensorflo
2021-09-04 17:16:28 63.06MB JupyterNotebook
1