为了让广大学者更直观的了解例子群算法,作者编制了粒子群算法演示程序,能够直观的观察例子群算法的寻优过程,并提供了源程序,供广大学者学习交流。
2019-12-21 21:11:37 136KB 例子群算法 PSO matlab
1
本程序利用当前流行的pso算法对rbf神经网络进行优化,使之预测精度高
2019-12-21 21:10:19 4KB rbf pso
1
http://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization Description Previously titled "Another Particle Swarm Toolbox" Introduction Particle swarm optimization (PSO) is a derivative-free global optimum solver. It is inspired by the surprisingly organized behaviour of large groups of simple animals, such as flocks of birds, schools of fish, or swarms of locusts. The individual creatures, or "particles", in this algorithm are primitive, knowing only four simple things: 1 & 2) their own current location in the search space and fitness value, 3) their previous personal best location, and 4) the overall best location found by all the particles in the "swarm". There are no gradients or Hessians to calculate. Each particle continually adjusts its speed and trajectory in the search space based on this information, moving closer towards the global optimum with each iteration. As seen in nature, this computational swarm displays a remarkable level of coherence and coordination despite the simplicity of its individual particles. Ease of Use If you are already using the Genetic Algorithm (GA) included with MATLAB's Global Optimization Toolbox, then this PSO toolbox will save you a great deal of time. It can be called from the MATLAB command line using the same syntax as the GA, with some additional options specific to PSO. This will allow a high degree of code re-usability between the PSO toolbox and the GA toolbox. Certain GA-specific parameters such as cross-over and mutation functions will obviously not be applicable to the PSO algorithm. However, many of the commonly used options for the Genetic Algorithm Toolbox may be used interchangeably with PSO since they are both iterative population-based solvers. See >> help pso (from the ./psopt directory) for more details. Features * NEW: support for distributed computing using MATLAB's parallel computing toolbox. * Full support for bounded, linear, and nonlinear constraints. *
2019-12-21 21:10:14 46KB 粒子群 约束优化 非线性约束 Matlab
1
粒子群算法解决背包问题的MATLAB程序
2019-12-21 21:09:38 17KB PSO 粒子群算法
1
用PSO算法优化Schaffer's f6函数,该函数的全局最小值为y=0,而最优解为(0,0)。
1
粒子群优化算法 随机摄动 惯性系数 压缩因子 C++实现
2019-12-21 21:03:29 1.49MB 粒子群优化算法 随机摄动 C++实现 PSO
1
粒子群优化算法对BPNN进行超参数优化的python代码实现,亲测可用
2019-12-21 20:57:47 3KB pso bpnn
1
传统粒子群算法的matlab实现代码,PSO是粒子群优化算法(——Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。
2019-12-21 20:57:11 4KB 优化算法
1
方便大家用于实现目标对象的动态优化,其中包括动态粒子群优化算法和动态蜂群优化算法
2019-12-21 20:56:34 128KB 123
1
本代码是matlab的代码,毕业设计的三个算法,对原来的粒子群算法进行改进,分别是混沌粒子群,和GAPSO得到的效果还不错,注意这是代码,源代码。
2019-12-21 20:55:06 545KB matlab 智能算法 源代码
1