基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预
2022-04-21 21:05:27 1.22MB 神经网络 cnn lstm 深度学习
预测模型调研文档 预测模型调研文档(RNN、CNN、LSTM模型)
2022-04-19 17:05:35 1.19MB lstm cnn rnn 深度学习
1
Keras 示例代码,包括CNN,LSTM,CNN-LSTM等,非常全面。(Keras sample code, including CNN, LSTM, CNN-LSTM, and so on, is very comprehensive.)
2022-04-06 20:07:04 551KB lstm cnn keras 人工智能
基于DEAP的四分类脑电情绪识别算法。 使用该模型从价-觉醒平面对四个情绪区域进行分类:高价-高觉醒(HVHA)、高价-低觉醒(HVLA)、低价-高觉醒(LVHA)和低价-低觉醒(LVLA)。 并提出了两种模型来解决这一问题:一维卷积神经网络(CNN-1D)结合LSTM,第二个模型为一维卷积神经网络(CNN-1D)结合GRU。 实验结果表明,该方法在1DCNN-GRU模型和1DCNN-LSTM模型中的训练准确率分别为96.3%和97.8%。因此,这两种模型对执行这种情绪分类任务都非常好。 这是专门为解决消失梯度问题而设计的,消失梯度问题通常成为时间序列数据集中的一个问题。
2022-03-29 09:33:31 1005KB 脑电情绪识别 deap cnn lstm
CNN-LSTM-Caption-Generator-master.zip CNN-LSTM-Caption-Generator-master.zip CNN-LSTM-Caption-Generator-master.zip
2022-03-17 21:02:28 323KB CNN,LSTM
1
CNN-LSTM-ATT论文评分模型 这是用于自动作文评分的纸质基于注意力的循环卷积神经网络的Pytorch实现。 [ ] 版本 我们的版本是: Python 3.6 PyTorch 1.8.0 训练 python train.py --oov嵌入--embeddding手套--embedding_dict Gloves.6B.50d.txt --embedding_dim 50 --datapath data / fold_ --prompt_id 1 请注意,您应该下载Gloves.6B.50d.txt。
2022-03-10 09:59:07 23.92MB Python
1
DEAP数据集自动情感识别 该项目使用来自DEAP数据集的EEG信号,使用集成的一维CNN,LSTM和2D,3D CNN以及带有LSTM的级联CNN将情绪分为4类。
2022-03-08 12:18:36 22.96MB JupyterNotebook
1
CNN-LSTM Matlab源码,稳定运行
2022-02-15 19:10:01 13.17MB cnn lstm matlab 人工智能
一个模型+主程序,然后里面还有CWRU轴承的数据,直接可以运行。 想修改模型可以在model.py里修改,这样就可以拿来自己搞点东西。
2022-02-05 17:06:58 17.51MB pytorch lstm cnn 深度学习
使用LSTM +CNN对EGG 进行分类预测,一维CNN提取数字信息特征,LSTM 进行分类预测
2022-01-08 21:30:53 2.49MB LSTM lstm分类 lstm预测 分类预测