GAN-VAE 分别为CIFAR-10和MNIST任务实施GAN和VAE
2021-11-22 14:17:55 5.54MB JupyterNotebook
1
里面包含TensorFlow和sklearn基于CIFAR-10数据集的前馈神经网络实现,以及各自的结果图片。
2021-11-17 15:39:54 807KB 机器学习
1
CIFAR-10数据集是深度学习中的一个通用的用于图像识别的基础数据集,官网下载太慢了,可以用这个学习交流。
2021-11-13 17:24:24 162.17MB cifar10 深度学习
1
Transfer_Learning_ResNet50 在此存储库中,我们将执行转移学习,以在Keras中的ResNet50模型上训练CIFAR-10数据集。
2021-11-11 17:02:32 4KB JupyterNotebook
1
PyTorch图像分类 以下论文是使用PyTorch实现的。 ResNet( ) ResNet- ( ) 警告( ) DenseNet( , ) 金字塔网( ) ResNeXt( ) 摇一摇( ) LARS( , ) 抠图( ) 随机擦除( ) SENet( ) 混合( ) 双切口( 1802.07426 ) RICAP ( 1811.09030 ) CutMix( 1905.04899 ) 要求 Ubuntu(仅在Ubuntu上进行过测试,因此可能无法在Windows上运行。) Python> = 3.7 PyTorch> = 1.4.0 火炬视觉 NVIDIA Apex pip install -r requirements.txt 用法 python train.py --config configs/cifar/
2021-11-08 11:25:36 3.26MB computer-vision pytorch imagenet cifar10
1
CIFAR_10-with-pytorch 一个Pytorch练习,实现CIFAR-10数据集的图像分类
2021-11-08 10:00:37 8KB Python
1
PyTorch图片分类:CIFAR-10 目录 1.注意 基于PyTorch的CIFAR-10图像分类。 CNN模型是ResNet-18。 该存储库受PyTorch模板项目[1]和带有PyTorch的Train CIFAR10 [2]的启发。 但是,该存储库已与PyTorch模板项目分离,以便集中精力快速研究和开发高级功能,而无需考虑向后兼容性。 特别是,与PyTorch模板项目不同,您可以使用dataloader /轻松处理自己的数据集。 我建议您应忽略带有八字体#的注释说明。 修改日期:2021年3月31日。 2.总结开发环境 操作系统(OS):Ubuntu MATE 18.04.3 LTS(Bionic) 图形处理单元(GPU):NVIDIA TITAN Xp,1ea GPU驱动程序:Nvidia-450.102.04 CUDA工具包:CUDA 10.2 cuDNN
2021-11-07 22:09:38 80.43MB Python
1
半监督学习 楷模 梯形图网络(带有自动编码器) 临时集合(与CNN) 锐化的临时合奏(带有CNN)(基于临时合奏) 卑鄙的老师(与CNN) MixMatch(带有CNN) 结果 在results.xlsx查看results.xlsx
2021-11-01 11:00:55 44KB Python
1
Tensorflow 2.0卷积神经网络cifar-10数据集图像分类1、cifar 10 数据集简介2、数据导入3、CNN模型搭建4、模型编译训练5、模型评估及预测6、拓展学习之独立热编码实现 1、cifar 10 数据集简介    cifar 10相比于MNIST数据集而言更为复杂,其拥有10个种类**(猫、飞机、汽车、鸟、鹿、狗、青蛙、马、船、卡车)**,这十大类共同组成了50000的训练集,10000的测试集,每一张图片都是32*32的3通道图片(彩色图片),在神经网络中,通常表示成如下形式:
2021-10-26 12:06:28 130KB ar c ci
1
步骤如下: 1.使用torchvision加载并预处理CIFAR-10数据集、 2.定义网络 3.定义损失函数和优化器 4.训练网络并更新网络参数 5.测试网络 运行环境: windows+python3.6.3+pycharm+pytorch0.3.0 import torchvision as tv import torchvision.transforms as transforms import torch as t from torchvision.transforms import ToPILImage show=ToPILImage() #把Tensor转成Image,
2021-10-21 20:37:32 41KB c cifar-10 IF
1