在C#编程中,类序列化是一个非常重要的概念,它涉及到将对象的状态转换为可以存储或传输的数据格式,如XML、JSON或者二进制。这个过程对于数据持久化、网络通信以及跨进程通信等场景非常有用。在这个"仅供学习"的压缩包中,我们有三个关键的类:XmlManager、Conflg和Worker,它们共同作用于实现C#的类序列化到文件的操作。 1. **XmlManager类**: 这个类通常是用来处理XML序列化和反序列化的操作。它可能包含方法如`Serialize`和`Deserialize`,分别用于将对象序列化为XML文件和从XML文件反序列化回对象。在C#中,我们可以使用`System.Xml.Serialization`命名空间中的`XmlSerializer`类来实现这一功能。`XmlSerializer`的构造函数接收一个类型参数,用于指定要序列化的对象类型。`Serialize`方法会将对象写入到一个文件流中,而`Deserialize`方法则从文件流中读取数据并构建一个新的对象实例。 2. **Conflg类**: Conflg类代表了要被序列化的数据结构。此类应该包含了需要保存或读取的字段和属性。为了使类能够被正确地序列化,每个成员变量(字段或属性)必须具有公共访问级别,并且非静态。此外,可以使用`[Serializable]`、`[XmlElement]`或`[XmlAttribute]`等特性来自定义序列化的行为。 3. **Worker类**: Worker类扮演了管理者的角色,它与XmlManager和Conflg类交互,负责数据的赋值、保存和读取。它可能包含了一系列的方法,如`LoadData`用于从文件加载数据,`SaveData`用于保存数据到文件,以及可能有的`UpdateData`方法用于更新数据。这些方法会实例化XmlManager和Conflg对象,并调用它们的方法来进行序列化和反序列化操作。 在实际应用中,使用这些类的过程大致如下: 1. 创建Conflg对象,设置其属性。 2. 创建XmlManager对象,通过调用它的`Serialize`方法将Conflg对象写入XML文件。 3. 当需要读取数据时,再次创建XmlManager对象,然后调用`Deserialize`方法从XML文件恢复Conflg对象。 4. Worker类作为中介,协调这两个对象的交互,提供了一致的接口供其他部分代码使用。 在学习这个例子时,重点应放在如何使用`XmlSerializer`类进行序列化和反序列化,以及如何设计和组织类结构以支持这一过程。同时,理解Worker类如何封装这些操作,使得数据的读写更加简洁和易用也是关键。通过实践这个例子,你可以深入理解C#的类序列化,并能将其应用到自己的项目中。
2024-10-15 11:17:38 78KB c#文件序列化保存
1
c# 本地离线OCR读取图片上文字(PaddleOCR),通过鼠标点击获取对应位置文字,图片缩放,通过输入编号获取对应位置文字
2024-10-13 16:51:19 273.37MB ocr
1
c# 本地离线OCR读取图片上文字(PaddleOCR),通过鼠标点击获取对应位置文字,通过输入编号获取对应位置文字
2024-10-13 16:37:14 77.28MB ocr
1
C# OpenCvSharp DNN 部署yolov4目标检测 源码 博客地址:https://blog.csdn.net/weixin_46771779/article/details/136052644
2024-10-13 12:53:31 248.02MB dnn 目标检测
1
在C#编程环境中,Windows Forms是一个用于构建桌面应用程序的强大框架。当我们谈论“C# WindowsForms识别多键盘输入”时,这个话题主要涉及如何处理多个键盘设备,并能够区分它们的键值和相关信息。在Windows Forms应用程序中,我们可以利用.NET Framework提供的事件处理机制来捕获键盘输入,然后通过特定的方法来识别不同键盘的来源。 了解Windows Forms中的键盘事件是非常重要的。两个主要的键盘事件是`KeyDown`和`KeyUp`,它们分别在按键按下和释放时触发。在事件处理程序中,我们可以访问`EventArgs`对象,它包含了关于键盘事件的详细信息。例如,`KeyEventArgs.KeyCode`属性可以获取到被按下的具体键的虚拟键码(如VK_A代表'A'键)。 然而,单凭这些信息并不能直接区分来自哪个键盘的输入,因为Windows Forms本身并不直接提供这样的功能。为了识别多键盘输入,我们需要更深入地探索系统底层。一种可能的方法是通过注册键盘设备的硬件ID或序列号。这通常涉及到使用Windows API函数,如`SetupDiGetClassDevs`和`SetupDiEnumDeviceInterfaces`来遍历并获取所有键盘设备的信息。 以下是一个简单的步骤概述: 1. 引入`System.Runtime.InteropServices`命名空间,以便使用P/Invoke调用Windows API。 2. 定义必要的API函数和结构体,如`SP_DEVINFO_DATA`、`GUID_DEVINTERFACE_KEYBOARD`等。 3. 使用`SetupDiGetClassDevs`获取设备信息集,这将包含所有键盘设备。 4. 遍历设备信息集,使用`SetupDiEnumDeviceInterfaces`获取每个键盘的接口详细信息。 5. 通过`SetupDiGetDeviceRegistryProperty`获取设备的硬件ID或序列号,这些信息是唯一的,可以用来区分不同的键盘。 6. 在Windows Forms应用程序中,当键盘事件触发时,对比当前输入事件与已知键盘的硬件ID或序列号,从而确定输入来源。 在Windows Forms应用程序1(`WindowsFormsApplication1`)中,你可以创建一个类来封装上述过程,然后在主窗体的初始化或加载事件中调用它,获取所有键盘设备的信息并存储在列表中。之后,在`KeyDown`和`KeyUp`事件处理程序中,你可以检查当前输入的键盘是否在已知的设备列表中,如果在,就可以根据设备ID进行相应的处理。 实现C# Windows Forms应用程序识别多键盘输入需要对Windows API有深入的理解,以及熟练使用P/Invoke调用非托管代码。这是一个相对复杂的过程,但通过这种方式,我们可以创建出能够精确区分不同键盘输入的应用程序。这在某些特殊应用场景,如游戏开发、音乐制作软件或者多用户共享设备中,可能是非常有价值的。
2024-10-12 19:09:28 65KB
1
基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。
2024-10-10 19:44:01 250KB
1
在IT行业中,雷赛控制(LeiSiAi Controller)是一种广泛应用的运动控制器,它支持多种编程语言,包括C#。本篇文章将详细讲解如何利用C#进行雷赛控制,涉及定位、插补运动等关键功能。 一、雷赛控制器介绍 雷赛控制是专门为自动化设备设计的一种高效、精确的运动控制系统,它可以实现对伺服电机、步进电机的精准控制,广泛应用于机器人、自动化生产线、精密机床等领域。C#作为.NET框架下的主要编程语言,拥有良好的面向对象特性,使得编写运动控制程序变得更为便捷。 二、C#接口与驱动安装 要进行雷赛控制器的C#编程,你需要安装雷赛提供的C#驱动库。通常,这会是一个DLL文件,包含必要的API接口。在项目中引用这个库后,你就能调用其中的方法来控制控制器。 三、定位运动 定位运动是指让设备移动到预设的位置。在C#中,你可以通过设置目标位置、速度、加速度等参数来实现。例如,调用`MoveToPosition(int axis, double position, double speed, double acceleration)`方法,其中`axis`代表轴号,`position`为目标位置,`speed`和`acceleration`分别代表速度和加速度。 四、插补运动 插补运动是指控制器根据多个点之间的路径进行平滑过渡,常用于曲线或圆弧运动。在雷赛控制器中,可以使用线性插补或圆弧插补。C#中,线性插补可能通过`LinearInterpolation(int axis, double[] positions, double[] speeds, double[] accelerations)`方法实现,圆弧插补则需要`ArcInterpolation(int axis, double[] params)`,其中参数数组包含了起始点、终点、圆心坐标、半径等相关信息。 五、状态监控与错误处理 在编写控制程序时,必须考虑到状态监控和错误处理。你可以通过查询控制器的状态变量,如`GetControllerStatus()`来获取当前运行状态,如果出现错误,如超速、过载等情况,应立即停止运动并进行相应处理。 六、实时反馈与闭环控制 为了确保运动的精度,可以使用C#接口获取实时的位置、速度等信息,形成闭环控制。例如,`GetPosition(int axis)`返回当前轴的位置,通过比较实际位置与目标位置的偏差,调整控制策略。 七、多轴协调运动 在复杂的应用中,可能需要多个轴同时协调运动。雷赛控制器支持多轴同步,可以通过指定一组轴的动作,如`SyncMove(int[] axes, double[] positions, double[] speeds, double[] accelerations)`,实现多个轴的同步定位。 总结,雷赛控制C#使用涵盖了定位、插补运动等多种功能,通过学习和掌握这些基本操作,开发者能够构建出高效、精准的自动化控制程序。在实践中,还需要结合具体设备和应用场景,不断优化代码,提高系统的稳定性和效率。
2024-10-10 19:43:00 1.06MB 运动控制
1
在IT行业中,C#是一种广泛使用的编程语言,尤其在开发Windows桌面应用、游戏以及服务器端应用时。串口(Serial Port)调试是嵌入式系统、工业设备通信以及物联网项目中常见的技术,它允许设备之间通过串行数据链路进行通信。本资料“C#串口调试.rar”提供了一个学习C#进行串口调试的基础教程,非常适合初学者和有一定经验的开发者参考。 串口调试通常涉及到以下几个核心知识点: 1. **C#中的System.IO.Ports命名空间**:C#提供了System.IO.Ports命名空间,它包含了处理串行通信所需的类,如SerialPort。通过这个命名空间,开发者可以方便地创建、配置和管理串口。 2. **SerialPort类**:这是C#中进行串口操作的核心类。你可以实例化一个SerialPort对象,然后设置其属性,如波特率(BaudRate)、数据位(DataBits)、停止位(StopBits)、校验位(Parity)等,来配置串口参数。 3. **事件驱动编程**:SerialPort类提供了多种事件,如DataReceived、PinChanged等,这些事件在串口接收到数据或发生特定硬件状态变化时触发。你可以注册事件处理器来处理这些事件,从而实现异步通信。 4. **读写数据**:SerialPort对象提供了Write和ReadLine等方法,用于向串口发送数据和接收数据。在调试过程中,正确设置这些方法的使用至关重要。 5. **流(Stream)的概念**:在C#中,串口通信可以通过串口流(SerialPort.BaseStream)进行,这使得串口操作与其他流操作(如文件流、网络流)具有一致性。 6. **串口调试工具**:除了编写代码进行串口通信外,还有许多现成的串口调试助手工具,如RealTerm、Serial Port Monitor等,它们可以帮助开发者在不编写代码的情况下测试串口通信,对于调试和故障排查非常有用。 7. **多线程与并发处理**:在进行串口通信时,可能需要处理多个并行任务,如同时接收和发送数据。此时,了解如何在C#中使用线程和任务(Task)就显得尤为重要。 8. **异常处理**:串口通信过程中可能会遇到各种错误,如硬件故障、数据错误等,因此需要使用try-catch语句进行异常处理,确保程序的健壮性。 9. **配置文件**:在实际项目中,串口参数可能需要根据不同的环境动态调整。将这些参数保存在配置文件(如app.config或json文件)中,可以使程序更具灵活性。 10. **串口调试的实践应用**:从简单的LED灯控制到复杂的工业自动化系统,串口调试在许多实际项目中都有应用。理解并掌握C#中的串口调试技术,能帮助开发者解决各种实际问题。 通过“C#串口调试.rar”这份资料,你将有机会深入了解这些概念,并通过实践提升自己的串口通信能力。学习时,建议结合具体的示例代码,逐步理解并尝试实现自己的串口通信功能,以巩固理论知识。
2024-10-09 21:24:22 95KB C#、串口调试
1
在本文中,我们将探讨如何使用C#和Socket编程来创建一个局域网聊天工具。我们要明白,Socket是网络编程中的基础组件,它允许两个应用程序通过网络进行通信。在C#中,我们可以使用System.Net.Sockets命名空间中的Socket类来实现这一功能。 局域网聊天工具的设计通常包括两部分:服务端和客户端。服务端负责监听和处理来自各个客户端的连接请求,而客户端则向服务端发起连接,并进行数据的发送和接收。 1. **服务端的实现**: - 创建一个Socket实例(Socket A),并将其绑定到特定的IP地址(如127.0.0.1)和端口号(如9050)。这可以通过调用Socket的Bind方法完成。 - 然后,调用Listen方法开始监听来自客户端的连接请求。Listen方法的参数可以设定最大连接队列的长度。 - 当接收到客户端的连接请求时,调用Accept方法生成一个新的Socket实例(Socket B)以处理与该客户端的通信。此时,我们可以通过B.RemoteEndPoint获取客户端的IP地址和端口。 - 使用Socket B的Send方法发送数据到客户端,Receive方法接收客户端的数据。 2. **客户端的实现**: - 客户端同样需要创建一个Socket实例(Socket D),并绑定到本机的一个未被占用的端口。 - 定义一个IPEndPoint对象(E),指定服务端的IP地址和端口,然后调用D.Connect(E)尝试连接到服务端。 - 连接成功后,客户端可以使用D.Send方法发送数据,D.Receive方法接收数据。 - 发送和接收数据时,都需要将字符串转换成字节数组,因为Socket通信的基础是字节流。 在实际应用中,为了简化代码和提高灵活性,我们可能会让服务端也能发送消息,客户端也能接收消息,这意味着服务端和客户端的角色是可以互换的。这可以通过让它们都能同时执行监听和连接操作来实现。 示例代码中给出了服务端的基本框架,但并未实现客户端的代码。在实际开发中,你需要创建一个单独的客户端程序,重复上述客户端的步骤来建立与服务端的连接并进行通信。 此外,为了构建一个完整的聊天工具,还需要考虑以下几点: - 多线程:服务端可能需要处理多个并发的客户端连接,因此需要使用多线程或异步编程模型来处理。 - 数据格式:为了保证数据的完整性和可读性,可能需要设计特定的消息格式,比如包含消息类型、发送者信息等。 - 用户界面:为了让用户能直观地发送和接收消息,需要设计一个友好的图形用户界面(GUI)。 - 错误处理:确保对各种异常情况进行妥善处理,如连接失败、网络中断等。 - 安全性:考虑数据加密以保护通信安全,防止中间人攻击或其他安全风险。 基于C#和Socket编程创建局域网聊天工具是一个涉及网络通信、多线程编程、用户界面设计等多个方面的综合性项目。通过这个项目,开发者可以深入理解网络编程的基本原理,提升C#编程技能。
1
【基于C#的TCP异步通信实现】 TCP(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。在C#中,利用Socket类可以实现TCP通信,而为了提高系统的响应速度和处理能力,通常会采用异步编程方式。本文将深入探讨如何使用C#的Socket类实现TCP异步通信。 ### 一、TCP异步通信概述 TCP异步通信是通过使用非阻塞IO模型,使得程序在等待网络IO操作完成时,可以继续执行其他任务,提高了程序的并发性和效率。C#中的Socket类提供了多个异步方法,如BeginConnect、BeginAccept等,用于实现TCP异步通信。 ### 二、实验环境 - 开发工具:Visual Studio 2010 - 编程语言:C# - 协议:TCP ### 三、异步通信实现 #### 3.1 建立连接 1. **服务器端异步接受连接** 在服务器端,我们使用`BeginAccept`方法启动异步接受连接请求。创建一个本地终结点(IP地址和端口号),然后创建一个Socket实例并将其绑定到该终结点。接下来,调用`Listen`方法开始监听连接请求,最后调用`BeginAccept`方法,传入一个回调函数和状态对象。回调函数通常用于处理新连接,并通过`EndAccept`方法结束连接。 ```csharp IPAddress local = IPAddress.Parse("127.0.0.1"); IPEndPoint iep = new IPEndPoint(local, 13000); Socket server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); server.Bind(iep); server.Listen(20); server.BeginAccept(new AsyncCallback(Accept), server); void Accept(IAsyncResult iar) { Socket MyServer = (Socket)iar.AsyncState; Socket service = MyServer.EndAccept(iar); } ``` 2. **客户端异步连接** 客户端使用`BeginConnect`方法发起异步连接请求,传入目标IP地址和端口号,以及一个回调函数和状态对象。状态对象通常包含Socket实例,以便在回调函数中使用`EndConnect`方法。 ```csharp IPAddress ip = IPAddress.Parse("127.0.0.1"); IPEndPoint iep = new IPEndPoint(ip, 13000); Socket client = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); client.BeginConnect(iep, new AsyncCallback(Connect), client); void Connect(IAsyncResult iar) { Socket clientSocket = (Socket)iar.AsyncState; try { clientSocket.EndConnect(iar); } catch (Exception e) { Console.WriteLine(e.ToString()); } finally { } } ``` #### 3.2 数据传输 在连接建立之后,可以使用`BeginSend`和`BeginReceive`方法进行异步的数据发送和接收。这两个方法同样需要回调函数来处理完成后的数据操作。发送数据时,使用`EndSend`方法结束发送,接收数据时使用`EndReceive`方法结束接收。 ### 四、TcpListener类的使用 除了直接使用Socket类进行异步连接,还可以使用`TcpListener`类。`TcpListener`提供了更简洁的方式来创建服务器,监听连接请求。创建`TcpListener`时指定本地终结点,然后调用`Start`方法开始监听。当有连接请求时,可以使用`AcceptSocket`或异步的`BeginAcceptSocket`方法来获取新的Socket实例。 ```csharp TcpListener listener = new TcpListener(iep); listener.Start(); Socket clientSocket = listener.AcceptSocket(); ``` 或者异步方式: ```csharp listener.BeginAcceptSocket(new AsyncCallback(AcceptClient), listener); void AcceptClient(IAsyncResult iar) { TcpListener listener = (TcpListener)iar.AsyncState; Socket clientSocket = listener.EndAcceptSocket(iar); } ``` 总结,C#的TCP异步通信主要依赖Socket类和TcpListener类提供的异步方法,通过这些方法,开发者可以在不阻塞主线程的情况下处理网络IO操作,从而实现高效的网络通信。在实际应用中,还需要考虑错误处理、数据编码解码、连接管理等复杂问题,以确保通信的稳定性和可靠性。
1