《算法导论》内容简介:在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。《算法导论(原书第3版)》将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。全书选材经典、内容丰富、结构合理、逻辑清晰,对本科生的数据结构课程和研究生的算法课程都是非常实用的教材,在IT专业人员的职业生涯中,《算法导论》也是一本案头必备的参考书或工程实践手册。
2026-01-20 02:57:51 48.31MB 算法导论
1
《算法导论中文版第二版-Cormen-带目录-扫描版》是一本由Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest和Clifford Stein编写的计算机科学领域的经典教材。本书深入浅出地介绍了算法与数据结构的基本理论、设计方法以及复杂度分析等多个方面的内容,是学习计算机科学尤其是算法设计与分析不可或缺的参考书。中文版的出版更是方便了国内读者学习与研究。 本书围绕算法的性能、效率和应用展开,内容涵盖算法设计与分析的基本概念、数据结构如栈、队列、树、图的介绍,以及排序算法、搜索算法、图算法、动态规划等高级主题。作者强调算法的数学分析,同时注重算法的实际应用,使得理论与实践相结合。 书中详细阐述了诸如贪心算法、分治算法、动态规划、网络流算法等多种设计技术,并且通过具体问题的实例来展示算法的应用场景。对于算法的复杂度分析,作者详细讲解了时间复杂度和空间复杂度的概念,并用大O表示法等数学工具进行分析。 此外,本书还包含了大量习题和思考题,帮助读者加深对算法原理的理解,并提高解决实际问题的能力。对于每个问题,书中不仅给出解答,还提供了分析过程和解题思路,有助于读者从不同角度思考和解决问题。 《算法导论》第二版相较于第一版,在内容和结构上都进行了更新和优化。例如,更新了相关算法的最新研究成果,改善了部分章节的叙述方式,并且针对教学需求加入了更多的案例研究和实验项目。此外,书中还增加了对现代计算机硬件架构的讨论,使读者能够更好地理解算法在现代计算机系统中的应用。 作为教材,本书不仅适合计算机专业的学生,对于那些希望提升编程能力、学习高效算法的工程师和爱好者也具有很高的参考价值。通过本书的学习,读者可以获得扎实的算法知识基础,为深入研究计算机科学领域内的高级课题打下坚实的基础。 《算法导论中文版第二版-Cormen-带目录-扫描版》不仅是一本全面系统的算法学习教材,也是计算机科学领域内不可或缺的经典著作。它不仅能够帮助初学者建立良好的算法理论基础,还能为高级学习者提供深入研究的丰富资源。无论是作为课堂教学的辅助材料,还是个人自学的参考书,本书都具有极高的实用价值。
2026-01-20 02:56:34 48.53MB 算法与数据结构
1
计算机前端和后端的开发工作是现代软件工程中不可或缺的两个部分。前端开发主要关注用户界面和用户体验,而后端开发则更多地关注服务器、应用程序和数据库之间的交互。在进行前端和后端开发时,数据库的管理是必不可少的一环,它负责存储和检索数据,以供前端和后端使用。 编程语言是计算机科学的基础,无论是前端还是后端开发,都需要掌握至少一种编程语言。常见的前端开发语言包括HTML、CSS和JavaScript。HTML用于构建网页的结构,CSS用于设计网页的样式,而JavaScript则负责网页的动态交互功能。后端开发中常用的编程语言有Java、Python、C#、PHP等,它们用于编写服务器端的应用程序逻辑和数据库管理。 数据结构是组织和存储数据的方式,它决定了数据如何被存储、检索和修改。在前端开发中,数据结构可能用于处理界面组件的状态,而在后端开发中,数据结构则对数据库的设计和优化至关重要。常见的数据结构包括数组、链表、栈、队列、树、图等。 算法是解决特定问题的一系列定义良好的指令集合。在前端开发中,算法可能被用于优化搜索功能或排序操作。后端开发中算法的应用更为广泛,包括数据库查询优化、网络通信协议处理、复杂业务逻辑的实现等。掌握算法对于提高软件的性能和效率至关重要。 设计模式是软件开发中重复使用的解决方案,它们总结了在特定上下文中解决特定问题的最佳实践。设计模式可以提高代码的可复用性、可维护性和系统的扩展性。前端开发中的设计模式包括MVC(模型-视图-控制器)、MVVM(模型-视图-视图模型)等,而后端开发中常见的设计模式有单例模式、工厂模式、策略模式等。 对于希望找到实习或工作的计算机专业学生和求职者来说,熟悉上述基础知识是基本要求。通过深入学习和理解这些知识点,不仅可以提高个人的技术能力,还能在面试中展现出对计算机科学的深刻理解,从而增加获得理想职位的机会。 此外,数据库的知识对于前端和后端开发者同样重要。前端开发者需要了解如何通过API与后端数据库交互,处理和展示数据;而后端开发者则需要精通数据库设计、优化和安全性等更为高级的技能。 随着互联网技术的快速发展,前端和后端技术也在不断更新和迭代。无论是对于初学者还是有经验的开发者,都需要不断学习和适应新技术,以保持自身的竞争力。
2026-01-19 10:27:23 46.83MB 数据结构 设计模式
1
基于yolov5识别算法实现的DNF自动脚本.zip
2026-01-18 10:43:10 27.28MB
1
本文介绍了dy最新版六神算法31.7.0的更新内容,重点提及了X-Helio、X-Medusa、X-Argus、X-Gorgon、X-Khronos、X-Ladon等参数的变更。其中,X-Argus和X-Ladon变更为短签名且基本不校验,而X-Medusa和X-Helios成为重要校验参数。X-Medusa包含多种设备参数字段信息和风控信息,已实现Python纯算还原。配合设备ID生成算法,可实现搜索附近团购、视频数据、商城等请求。学习交流可移步主页简介,需注明来意。
2026-01-18 10:33:12 3KB 算法分析 逆向工程 安全校验
1
极化码(Polar Code)是由土耳其科学家Erdal Arıkan在2009年提出的一种新型纠错编码技术。它通过利用信道的极化现象,将虚拟信道分为误码率接近0和接近1/2的两类。在编码设计中,数据被放置在误码率极低的信道上,从而实现高效的数据传输。极化码的主要优势在于其理论编码容量能够达到香农限,并且构造方法较为简单。 MATLAB是一种功能强大的数学计算和编程工具,广泛应用于科学研究和工程领域。在极化码的研究中,MATLAB可用于构建编码和解码算法,模拟数据在不同信道条件下的传输效果,验证理论性能,并优化相关参数。 SC(Successive Cancellation,逐位取消)译码是极化码的基本解码方法。它从最可靠的比特开始,依次解码每个虚拟信道,且每个比特的解码结果会影响后续比特的解码,因为它们之间存在依赖关系。虽然SC译码的实现较为简单,但其计算复杂度较高,随着码长的增加,解码时间会线性增长。 SCL(Successive Cancellation List,逐位取消列表)译码是SC译码的改进版本。它通过引入列表机制,同时处理多个路径,从而增强了错误校正能力,并在一定程度上降低了错误率。与SC译码相比,SCL译码虽然需要消耗更多的计算资源,但能够提供更好的性能。 一个完整的MATLAB仿真资源通常包含以下内容: 编码模块:用于实现极化码的生成,包括码字构造和极化矩阵操作等。 信道模型:用于模拟各种通信信道,例如AWGN(加性高斯白噪声)信道或衰落信道。 SC/SCL译码模块:包含SC译码和SCL译码的算法实现。 误码率(BER)计算:通过比较发送和接收的码字,计算误码率,以评估编码性能。 性能曲线绘制:绘制误码率与信噪比(SNR)之间的关系曲线,展示不同译码策略的性能差异。 使用说明:指导用户如何运行仿真,理解代码结构,以及如何调整参数以进行自定义实验。 代码注
2026-01-18 09:20:04 51KB 译码算法
1
Unity+c#贪心算法求解旅行商问题,内有demo演示
2026-01-17 22:42:10 35.06MB unity 贪心算法 旅行商问题
1
内容概要:本文探讨了如何利用遗传算法优化风电混合储能系统的容量配置,以降低独立风力发电系统中储能装置的生命周期费用。文中建立了以生命周期费用最小化为目标函数、负荷缺电率为约束条件的优化模型,结合蓄电池储能特性,利用风电和负荷24小时的发用电数据,研究了包含蓄电池的混合储能系统的能量管理策略。通过MATLAB仿真平台,采用改进的遗传算法对混合储能系统的容量进行优化配置,经过多次迭代得到最优方案。算例分析显示,优化后的系统显著降低了经济成本,提升了供电可靠性。 适合人群:从事风力发电、储能系统优化以及遗传算法研究的专业人士和技术人员。 使用场景及目标:适用于需要优化风电混合储能系统容量配置的研究项目和实际工程应用,旨在降低成本、提高系统可靠性和经济效益。 其他说明:本文不仅提供了详细的理论背景和建模思路,还附带了高质量的MATLAB代码,有助于读者深入理解和实践遗传算法在储能系统优化中的应用。
2026-01-17 21:31:27 271KB
1
基于机器学习的K近邻算法是一种简单而有效的分类方法,它在水果分类等许多实际问题中都有着广泛的应用。K近邻算法的核心思想是依据最近邻的K个样本的分类情况来决定新样本的分类。在水果分类的应用场景中,首先需要构建一个包含水果特征(如重量、大小、颜色等)和对应种类标签的数据集,通过这个数据集训练模型,最终用于新的水果特征数据进行种类预测。 在实现K近邻算法分类的过程中,一般需要以下步骤:收集并整理水果的数据集,其中包含了多个样本的特征和标签。接下来,需要选择一个合适的距离度量方式,常用的距离度量包括欧氏距离、曼哈顿距离等。在算法中,通常需要对特征进行归一化处理,以消除不同量纲对距离计算的影响。 算法的实现可以分成几个关键部分:数据预处理、距离计算、K值选择和分类决策。数据预处理主要是为了消除数据集中的噪声和异常值,保证数据质量。距离计算是算法中最为关键的部分,直接影响着分类的准确性。K值的选择在算法中称为模型选择,K值不宜过大也不宜过小,过大则可能导致分类边界过于平滑,而过小则分类边界波动较大,容易受到噪声数据的干扰。分类决策通常依据投票法,即选取距离最近的K个样本,根据多数样本的种类来判定新样本的类别。 在Python中实现K近邻算法,可以使用诸如scikit-learn这样的机器学习库,该库提供了完整、高效的机器学习工具,其中就包括了K近邻分类器。利用scikit-learn库中的KNeighborsClassifier类可以方便地实现模型的训练和分类预测。在实践中,我们首先需要将数据集划分为训练集和测试集,以训练集数据训练模型,再用测试集数据评估模型性能。此外,评估分类器性能常用的指标包括准确率、召回率、F1分数等。 对于水果分类任务,K近邻算法可以高效地根据特征预测未知水果的种类。尽管K近邻算法在实际应用中简单易懂,但它也有着自身的局限性,比如对于大数据集的处理效率较低,对高维数据的分类效果不佳,且对于K值的选取非常敏感。因此,在实际应用中,可能需要与其他机器学习算法或技术结合,以达到更好的分类效果。 对于Python源码实现,通常包括导入所需的库、定义数据集、实例化KNN模型、模型训练、模型评估、预测等步骤。代码编写中需要注意数据的输入输出格式、模型参数的调整以及性能评估指标的选择等。在实际编码中,还可能遇到数据不平衡、类别重叠等问题,需要通过特征工程、参数调整和模型集成等方法进行解决。在使用K近邻算法进行水果分类时,Python编程语言以其强大的库支持和简洁的语法,为快速开发和实现提供了便利。 K近邻算法是一种实用的机器学习技术,在水果分类等实际问题中表现出了高效性。通过算法的设计和优化,可以有效提升分类的准确性和效率。结合Python编程语言的易用性,可以更好地实现和应用K近邻算法,解决实际问题。
2026-01-16 18:45:14 1KB 机器学习 K近邻算法 水果分类 Python
1
STM32步进电机高效S型曲线与SpTA算法加减速控制:自适应多路电机控制解决方案,STM32步进电机高效S型曲线与SpTA加减速控制算法:自适应多路电机控制,提升CPU效率,STM32步进电机高效S型T梯形曲线SpTA加减速控制算法 提供基于STM32的步进电机电机S型曲线控制算法以及比较流行的SpTA算法. SpTA算法具有更好的自适应性,控制效果更佳,特别适合移植在CPLD\\\\FPGA中实现对多路(有多少IO,就可以控制多少路)电机控制,它并不像S曲线那样依赖于PWM定时器的个数。 S型算法中可以自行设定启动频率、加速时间、最高速度、加加速频率等相关参数,其中也包含梯形算法。 在S型算法中使用了一种比DMA传输效率还要高的方式,大大提高了CPU的效率,另外本算法中可以实时获取电机已经运行步数,解决了普通DMA传输在外部产生中断时无法获得已输出PWM波形个数的问题。 ,基于STM32的步进电机控制; S型T梯形曲线控制算法; SpTA加减速控制算法; 高效控制; 实时获取运行步数。,基于STM32的步进电机S型与SpTA混合加减速控制算法研究
2026-01-16 16:02:01 733KB 数据仓库
1