本书是学习Python编程语言的入门书籍。Python是一种很流行的开源编程语言,可以在各种领域中用于编写独立的程序和脚本。Python免费、可移植、功能强大,而且使用起来相当容易。来自软件产业各个角落的程序员都已经发现,Python对于开发者效率和软件质量的关注,这无论在大项目还是小项目中都是一个战略性的优点。   无论你是编程初学者,还是专业开发人员,本书的目标是让你快速掌握核心Python语言基础。阅读本书后,你会对Python有足够的了解,能够将其应用于所从事的领域中。
2023-11-05 06:02:36 55.23MB python
1
c++promer(11章以后),我把资源分成上下了,内容超过60MB,只能分开了...1--10章的在我的资源里可以找到...
2023-10-26 08:03:01 38.93MB c++ c++promer
1
c++promer(1-10章),我把资源分成上下了,内容超过60MB,只能分开了...11章以后的在我的资源里可以找到...
2023-10-26 08:02:27 48MB c++ c++promer
1
thinking.in.java第三版.第四版(中文版.习题答案) 第三版是中文版 第四版是英文版 CLeopard
2023-10-20 07:01:34 9.23MB ThinkingInJava 习题答案
1
VDA 6.3:2023(第四版)新版标准正式发布.pd
2023-10-12 09:24:38 2.83MB 文档资料
VC++技术内幕第四版(清晰版) 共4个文件
1
VC++技术内幕第四版(清晰版) 共4个文件
1
VC++技术内幕第四版(清晰版) 共4个文件
1
VC++技术内幕第四版(清晰版) 共4个文件
1
1 Introduction 1 1.1 Chapter Focus, 1 1.2 On Kalman Filtering, 1 1.3 On Optimal Estimation Methods, 6 1.4 Common Notation, 28 1.5 Summary, 30 Problems, 31 References, 34 2 Linear Dynamic Systems 37 2.1 Chapter Focus, 37 2.2 Deterministic Dynamic System Models, 42 2.3 Continuous Linear Systems and their Solutions, 47 2.4 Discrete Linear Systems and their Solutions, 59 2.5 Observability of Linear Dynamic System Models, 61 2.6 Summary, 66 Problems, 69 References, 3 Probability and Expectancy 73 3.1 Chapter Focus, 73 3.2 Foundations of Probability Theory, 74 3.3 Expectancy, 79 3.4 Least-Mean-Square Estimate (LMSE), 87 3.5 Transformations of Variates, 93 3.6 The Matrix Trace in Statistics, 102 3.7 Summary, 106 Problems, 107 References, 110 4 Random Processes 111 4.1 Chapter Focus, 111 4.2 Random Variables, Processes, and Sequences, 112 4.3 Statistical Properties, 114 4.4 Linear Random Process Models, 124 4.5 Shaping Filters (SF) and State Augmentation, 131 4.6 Mean and Covariance Propagation, 135 4.7 Relationships Between Model Parameters, 145 4.8 Orthogonality Principle, 153 4.9 Summary, 157 Problems, 159 References, 167 5 Linear Optimal Filters and Predictors 169 5.1 Chapter Focus, 169 5.2 Kalman Filter, 172 5.3 Kalman–Bucy Filter, 197 5.4 Optimal Linear Predictors, 200 5.5 Correlated Noise Sources, 200 5.6 Relationships Between Kalman and Wiener Filters, 201 5.7 Quadratic Loss Functions, 202 5.8 Matrix Riccati Differential Equation, 204 5.9 Matrix Riccati Equation in Discrete Time, 219 5.10 Model Equations for Transformed State Variables, 223 5.11 Sample Applications, 224 5.12 Summary, 228 Problems, 232 References, 235 6 Optimal Smoothers 239 6.1 Chapter Focus, 239 6.2 Fixed-Interval Smoothing, 244 6.3 Fixed-Lag Smoothing, 256 6.4 Fixed-Point Smoothing, 268 7 Implementation Methods 281 7.1 Chapter Focus, 281 7.2 Computer Roundoff, 283 7.3 Effects of Roundoff Errors on Kalman Filters, 288 7.4 Factorization Methods for “Square-Root” Filtering, 294 7.5 “Square-Root” and UD Filters, 318 7.6 SigmaRho Filtering, 330 7.7 Other Implementation Methods, 346 7.8 Summary, 358 Problems, 360 References, 363 8 Nonlinear Approximations 367 8.1 Chapter Focus, 367 8.2 The Affine Kalman Filter, 370 8.3 Linear Approximations of Nonlinear Models, 372 8.4 Sample-and-Propagate Methods, 398 8.5 Unscented Kalman Filters (UKF), 404 8.6 Truly Nonlinear Estimation, 417 8.7 Summary, 419 Problems, 420 References, 423 9 Practical Considerations 427 9.1 Chapter Focus, 427 9.2 Diagnostic Statistics and Heuristics, 428 9.3 Prefiltering and Data Rejection Methods, 457 9.4 Stability of Kalman Filters, 460 9.5 Suboptimal and Reduced-Order Filters, 461 9.6 Schmidt–Kalman Filtering, 471 9.7 Memory, Throughput, and Wordlength Requirements, 478 9.8 Ways to Reduce Computational Requirements, 486 9.9 Error Budgets and Sensitivity Analysis, 491 9.10 Optimizing Measurement Selection Policies, 495 9.11 Summary, 501 Problems, 501 References, 502 10 Applications to Navigation 503 10.1 Chapter Focus, 503 10.2 Navigation Overview, 504
2023-09-15 18:26:06 43.47MB 清晰版
1