Elman神经网络的数据预测—电力负荷预测模型参考源码。 说明:用MATLAB实现。
2023-04-12 15:13:11 2KB MATLAB 预测模型 Elman神经网络
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果
2023-04-06 19:49:39 144KB python ARIMA
1
1.提出问题 明确要分析的问题,为后续的机器学习过程提供目标。 2.理解数据(采集并查看数据) 采集数据(根据研究问题采集数据);导入数据(从不同数据源读取数据);查看数据信息(描述统计信息、数据缺失值、异常值情况等,可以结合具体图表来直观查看数据)。 3.数据清洗(数据预处理) 数据预处理是数据分析过程中关键的一环,数据质量决定了机器学习分析的上限,而具体采用的算法和模型只是逼近这个上限。(包括缺失数据处理、异常值处理、数据类型转换、列名重命名、数据排序、选择子集、特征工程等步骤) 4.构建模型 根据研究的问题以及数据的特点选择合适的算法,将训练数据放入所选择的机器学习算法中构建相应的模型,有时需要对多种算法模型进行比较,甚至进行模型整合。 5.模型评估 利用测试数据对得到的模型效果进行评估,具体评估指标依据研究的问题及采用的模型进行选择,常用到的指标需根据模型的类型而定,如分类模型常用准确率、ROC-AUC等,而回归模型可以用决定系数等。
2023-04-06 09:49:44 52KB 程序设计 项目语言 毕业设计 源码
1
预测模型】 BP神经网络太阳辐射预测【含Matlab源码 883期】.zip
2023-03-30 14:04:38 150KB
1
预测模型】基于蚱蜢算法优化支持向量机实现预测分类模型matlab源码.md
2023-03-22 15:04:23 10KB
1
灰色马尔可夫预测模型是将灰色系统理论和马尔可夫链理论相结合建立的预测模型,它不仅充分发挥了灰色预测模型和马尔可夫预测模型的优点,而且因为马尔可夫链理论的引入,有效地解决了灰色预测模型对于随机波动性较大的数列预测精度低问题。首先建立GM(1,1)灰色动态拟合模型,并以此作为工业SO2排放量发展变化的动态基准线模型,在此基础上应用马尔可夫链确定系统状态转移概率矩阵,通过系统状态的划分、样本值与模型拟合值之间的残差等指标的分析计算,最终以概率形式分析和预测工业SO2排放量的发展变化区间。理论分析和实践都表明,该
2023-03-20 15:57:36 742KB 自然科学 论文
1
流行性感冒是一种传染性疾病,传播Swift而广泛。 流感的爆发给社会带来了巨大的损失。 本文设置了流感关键词的四个主要类别,即“预防阶段”,“症状阶段”,“治疗阶段”和“常用短语”。 使用Python网络爬虫从国家流感中心的流感监测每周报告和百度索引中获取相关的流感数据。 通过机器学习建立支持向量回归(SVR),最小绝对收缩和选择算子(LASSO),卷积神经网络(CNN)预测模型,并考虑了流感的季节性特征,还建立了时间序列模型(ARMA) )。 结果表明,基于网络搜索数据预测流感是可行的。 机器学习在基于Web搜索数据的流感预测中显示出一定的预测效果。 今后它将在流感预测中具有一定的参考价值。 ARMA(3,0)模型可预测更好的结果并具有更大的概括性。 最后,给出了本文的研究不足和今后的研究方向。
2023-03-13 14:46:15 2.23MB 数据挖掘 网络搜索 机器学习 百度指数
1
预测模型】卡尔曼滤波运动轨迹预测【含Matlab源码 590期】.zip
2023-03-13 12:49:18 94KB
1
SalaryPrediction:这是使用线性回归的薪资预测模型
2023-03-11 22:20:34 15KB JupyterNotebook
1