新增加的第 4 章会让刚刚接触新型图形处理引擎的读者受益匪浅,这一章的重点是数据级并行,解释了一些虽有不同但正在趋于一致的解决方案,这些方案是由通用处理器中的多
2023-11-02 09:38:48 27.13MB
1
计算机体系结构:量化研究方法(第5版)(英文版)
2023-10-03 19:36:30 11.89MB 体系结构 量化研究方法 英文
1
1.新增《银行间市场基准利率参考指标》 2.新增《浮息债基础利率属性》 1.配股中增加配股实际数量和结果公告日 2.并补充自由流通股的历史数据说明 1.新增《首
2023-09-26 12:09:41 3.83MB
1
 之前用python做量化交易,需要画k线和各种曲线等,使用了mpl_finance,但体验太差,不支持拖拽而且性能很差,于是就自己写了个k线图工具TradeGraph,性能可媲美专业的股票软件
2023-09-14 20:35:43 6.83MB python量化交易 k线绘图工具
1
为您提供hikyuu开源量化交易研究框架下载,Hikyuu Quant Framework是一款基于C++/Python的开源量化交易研究框架,用于策略分析及回测(仅受限于数据,如有数据也可用于期货等)。其核心思想基于当前成熟的系统化交易方法,将整个系统化交易抽象为由市场环境判断策略、系统有效条件、信号指示器、止损/止盈策略、资金管理策略、盈利目标策略、移滑价差算法七大组件,你可以分别构建这些组件的策略资产库,在实际研究中对它们自由组合来观察
1
混凝土结构在施工与使用的过程中易产生各种形式的裂缝,由此会产生诸多安全问题。传统的人工安全检测方法,不仅耗费财力和时间,而且无法保障其检测精度。为了提高混凝土表面裂缝的识别效率,提出了一种基于卷积神经网络结合聚类分割的识别方法,实现了对较复杂背景下混凝土表面裂缝图像的准确识别。研究结果显示,该方法不仅能够高效地分类,还能够高精度地对较复杂背景下的裂缝进行识别,这为降低混凝土表面裂缝识别的工作量、维护混凝土结构,对其进行安全检测提供了理论依据,同时也为以后更高精度和更复杂条件下的裂缝识别研究提供了一些参考。
2023-06-28 16:51:18 12.84MB 图像处理 裂缝识别 安全检测 卷积神经
1
本策略交易逻辑:当价格触及布林线上轨的时候进行卖出,当触及下轨的时候,进行买入。回测收益率99.77%,最大回撤:32.04%,夏普比率:0.43
1
1. 金融量化-上证指数某股票的模型分析收益率 2. R语言版本
2023-04-25 22:21:02 275KB r语言 股票分析
1
CNN的成功依赖于其两个固有的归纳偏置,即平移不变性和局部相关性,而视觉Transformer结构通常缺少这种特性,导致通常需要大量数据才能超越CNN的表现,CNN在小数据集上的表现通常比纯Transformer结构要好。 CNN感受野有限导致很难捕获全局信息,而Transformer可以捕获长距离依赖关系,因此ViT出现之后有许多工作尝试将CNN和Transformer结合,使得网络结构能够继承CNN和Transformer的优点,并且最大程度保留全局和局部特征。 Transformer是一种基于注意力的编码器-解码器结构,最初应用于自然语言处理领域,一些研究最近尝试将Transformer应用到计算机视觉领域。 在Transformer应用到视觉之前,卷积神经网络是主要研究内容。受到自注意力在NLP领域的影响,一些基于CNN的结构尝试通过加入自注意力层捕获长距离依赖关系,也有另外一些工作直接尝试用自注意力模块替代卷积,但是纯注意力模块结构仍然没有最先进的CNN结构表现好。
1
由于C++语言的运行优势,多数算法模型在实际应用时需要部署到C++环境下运行,以提高算法速度和稳定性 本文主要讲述WIn10下在VS工程中通过Opencv部署yolov5模型,步骤包括: 1.python环境下通过export.py导出.onnx模型 2.C++环境下通过tensorrt进行模型导入和调用,过程中实现int8量化加速 适合刚开始部署模型的小白或者研究者,内附教程
2023-04-20 20:52:45 9.62MB 目标检测 计算机视觉 YOLO 深度学习
1