数值优化:最小相位谱分析,
适合信号图像处理,机器学习的初学者分析学习。
在控制理论和信号处理中,如果系统及其逆是因果且稳定的,则称线性时不变系统是最小相位的。
最一般的因果 LTI传递函数可以唯一地分解为一系列全通和最小相位系统。系统函数是两部分的乘积,在时域中,系统的响应是两部分响应的卷积。最小相位和一般传递函数之间的区别在于,最小相位系统的传递函数的所有极点和零点都位于 s 平面表示的左半部分(在离散时间内,分别在z 平面)。由于反转系统函数会导致极点变为零,反之亦然,并且右侧的极点(s平面 虚线)或复平面外(z平面 单位圆)导致系统不稳定,反演下只有最小相位系统类是闭合的。直观地说,一般因果系统的最小相位部分以最小的群延迟实现其幅度响应,而其全通部分仅校正其相位响应以与原始系统函数相对应。
极点和零点的分析仅在传递函数的情况下是准确的,传递函数可以表示为多项式的比率。在连续时间的情况下,这样的系统转化为传统的、理想化的LCR 网络的网络。在离散时间中,它们可以方便地转化为近似值,使用加法、乘法和单位延迟。可以证明,在这两种情况下,具有递增阶的有理形式的系统函数
1