UART DUT 介绍、验证功能提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等 UART(Universal Asynchronous Receiver-Transmitter)是一种异步全双工串行通信协议,将要传输的数据在串行通信与并行通信之间进行转换。作为把并行输入信号转成串行输出信号的芯片,UART 通常被集成于其他通讯接口的连结上,其工作原理是将数据的二进制位一位一位地进行传输。 DUT(Device Under Test)功能理解:DUT design Spec 如左图所示,DUT 有两种执行方式,一种是对外围设备接收的数据进行串行到并行的转换(RX 方向);另一种是对传输到外围的数据进行并行到串行的转换(TX 方向)。 DUT 模块理解: 1. APB interface:实现接口信号的解码,用于访问状态,配置寄存器,接收,发送数据到 FIFO。 2. transmit FIFO:8 位宽,16 位深,用于存储从 APB interface 中写入的数据,直到数据被传输逻辑读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 3. receive FIFO:12 位宽,16 位深,用于存储上行端接收的数据以及错误位信息,直到数据被 APB 接口读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 4. transmitter:将传输 FIFO 中的数据实现并行到串行的转换。 5. receiver:将对外围设备数据进行串行到并向的转换,同时还会执行溢出,奇偶校验,frame 错误检测和中断检测,并将其写入到 receive FIFO。 6. 波特率发生器:包含自由运行的计数器,产生内部 x16 时钟和 Baud16 信号。Baud16 是 UART 发射和接收控制提供定时信息。 7. interrupt generation:该控制器在每个外围设备的基础上实现另一级别的屏蔽,这样,全局的中断服务例程可以从系统中断服务器中读取。 UARTLCR_H 寄存器内部宽 29 位,但外部通过 AMBA APB 总线通过三次写入寄存器位置 UARTLCR_H、UARTIBRD 和 UARTFBRD 进行访问。UARTLCR_H 定义了传输参数、字长、缓冲区模式、传输停止位数、奇偶校验模式和中断生成。 波特率配置:波特率除数是由 16 位整数和 6 位小数部分组成的 22 位数字。波特率生成器使用该值来确定位周期。波特率除数 = UARTCLK /(16xBaud Rate)= BRDI + BRDF,其中 BRDI 是整数部分,BRDF 是小数分隔的小数部分小数 m = integer(BRDF*2^n + 0.5)生成内部时钟启用信号 Baud16,它是一个 UARTCLK 宽脉冲流,平均频率为所需波特率的 16 倍。然后将该信号除以 16,得到传输时钟。 数据传输和接收:对于传输,数据被写入传输 FIFO。如果 UART 已启用,则会导致数据帧开始使用 UARTLCR_H 中指定的参数进行传输。数据继续传输,直到传输 FIFO 中没有数据为止。一旦数据写入传输 FIFO(即 FIFO 非空),BUSY 信号就会变高,并在传输数据时保持高电平。只有当传输 FIFO 为空,并且最后一个字符(包括停止位)已从移位寄存器传输时,BUSY 才被否定。即使 UART 可能不再启用,也可以将 BUSY 断言为 HIGH。 当接收器空闲为 idle 时(UARTRXD 连续 1,处于标记状态)且在数据输入上检测到低电平(已接收到起始位)时,接收计数器(时钟由 Baud16 启用)开始运行,并在正常 UART 模式下在该计数器的第八个周期对数据进行采样。如果 UARTRXD 在 Baud16 的第八个周期上仍然处于低位,则起始位有效,否则会检测到错误的起始位并将其忽略。如果起始位有效,则根据数据字符的编程长度,在 Baud16 的每 16 个周期(即一个位周期之后)对连续数据位进行采样。如果启用了奇偶校验模式,则检查奇偶校验位。如果 UARTRXD 高,则确认有效的停止位,否则会发生帧错误。 UART 读写时序: * UART 读写时序图 * UART 数据帧格式 起始位:发送 1 位逻辑 0(低电平),开始传输数据。 数据位:可以是 5~8 位的数据,先发低位,再发高位,一般常见的就是 8 位(1 个字节),其他的如 7 位的 ASCII 码。 校验位:奇偶校验,将数据位加上校验位,1 的位数为偶数(偶校验),1 的位数为奇数(奇校验)。 停止位:停止位是数据传输结束的标志,可以是 1/2 位的逻辑 1(高电平)。 空闲位:空闲时数据线为高电平状态,代表无数据。 UVM 验证代码介绍: * UVM 验证环境搭建 * UVM 验证用例编写 * UVM 验证结果分析 Debug 过程和联调过程: * Debug 工具选择 * Debug 过程 * 联调过程 覆盖率收集: * 代码覆盖率收集 * 数据覆盖率收集 * FSM 覆盖率收集 通过对 UART DUT 的介绍、验证功能提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等,我们可以更好地了解 UART 模块的工作原理和验证方法,并提高我们对 UART 模块的设计和验证能力。
2024-08-27 11:02:43 6.21MB uart
1
三维激光云技术是现代地理信息系统(GIS)和自动驾驶领域中的核心技术之一,它通过使用激光雷达(LiDAR,Light Detection and Ranging)设备来获取环境的三维空间信息。车载云数据,如标题和描述中提及的,是通过安装在车辆上的LiDAR系统收集的,用于描绘道路、建筑物、交通设施等周围环境的精确三维模型。 **3D 三维激光云数据** 3D激光云数据是通过激光雷达扫描仪生成的大量三维坐标集合,每个代表一个空间位置,具有X、Y、Z坐标值以及可能的其他属性如反射强度、颜色等。这种数据类型广泛应用于测绘、地质、环境科学、城市规划、自动驾驶等多个领域。云数据能够提供高精度的地形和地表特征,为复杂环境的分析和建模提供了强有力的支持。 **道路数据** 道路数据在三维激光云中尤为重要,尤其是在自动驾驶和智能交通系统中。通过对道路云数据的处理,可以提取路面边界、车道线、交通标志、路缘石等关键元素,用于构建高精度的数字地图,支持车辆的自主导航和避障功能。例如,通过云数据分析,可以识别出路面的坡度、曲率,这对于车辆控制和安全驾驶至关重要。 **LAS 文件格式** .LAS是激光雷达数据的标准文件格式,由美国激光雷达协会(ASPRS)制定。它是一种二进制格式,能够存储云数据的原始测量值和附加信息,如时间戳、RGB颜色、激光脉冲返回次数等。LAS文件可以有效地存储大量云数据,并且有多种开源和商业软件支持对其进行读取、处理和分析。 **车载云** 车载云数据是通过安装在车辆上的移动LiDAR系统收集的。这种系统通常包括高精度GPS和惯性测量单元(IMU),以确定云的地理位置和姿态信息。车载云数据的获取可以实现连续、动态的环境扫描,适用于实时路况监测、道路维护评估和自动驾驶车辆的环境感知。 "三维激光云车载云道路云数据"是一个涵盖了地理信息技术、自动驾驶和数据处理的综合性主题。通过分析和处理.LAS格式的云数据,我们可以获得道路的详细三维模型,进而推动智能交通系统的进步和自动驾驶汽车的安全行驶。对于迎宾路车载数据的分析,可以进一步提取道路特征,进行道路状况评估、交通流量分析,甚至为自动驾驶算法的训练提供宝贵的数据支持。
2024-08-26 18:19:02 884.84MB 道路数据 车载点云
1
合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。
2024-08-26 12:58:21 396KB SAR点目标
1
基于Spring Boot实现的餐厅餐微信小程序,为顾客提供了一种全新的、便捷的用餐体验。以下是其主要功能描述: 菜品浏览与搜索:小程序首页展示餐厅的各类菜品,用户可以浏览详细的菜品信息,包括图片、价格、口味等。同时,支持关键词搜索,快速找到心仪的菜品。 购物车与餐:用户可以将想的菜品加入购物车,进行数量的选择和调整。完成选择后,一键下单,简单方便。 订单管理与支付:用户可以随时查看自己的订单状态,包括待支付、已支付、已完成等。支持多种支付方式,确保支付过程安全快捷。 会员系统与优惠:小程序支持会员注册与登录,会员可以享受更多的优惠和特权,如积分兑换、会员折扣等。 餐厅信息与导航:展示餐厅的详细信息,如地址、联系电话、营业时间等。同时,提供地图导航功能,帮助用户快速找到餐厅位置。 评价与建议:用户可以对餐厅的菜品、服务等进行评价,分享自己的用餐体验。同时,可以提出宝贵的建议,帮助餐厅改进服务质量。 消息通知与提醒:小程序会实时推送订单状态更新、优惠活动等信息,确保用户不会错过任何重要通知。 综上所述,基于Spring Boot实现的餐厅餐微信小程序通过菜品浏览、购物车餐、订单管理、会员优惠、餐厅信息、评价建议及消息通知等功能,为顾客提供了一个便捷、高效、个性化的用餐体验。
2024-08-26 12:17:42 13.64MB 点餐小程序 springboot
1
【优化布局】粒子群算法求解带出入的车间布局优化问题是一个重要的工业工程与运筹学议题。在现代制造业中,高效的车间布局对于提高生产效率、降低物流成本以及优化工作环境具有重大意义。粒子群算法(Particle Swarm Optimization, PSO)是一种借鉴自然界中鸟群飞行行为的全局优化算法,它在解决复杂优化问题时表现出优秀的性能。 车间布局优化的目标通常是在满足特定约束条件下,如设备尺寸、工艺流程顺序、安全距离等,寻找最优的设备位置排列,以最小化物料搬运成本或最大化生产效率。带出入的车间布局问题更进一步考虑了物料的进出路径,确保物料流的顺畅和高效。 粒子群算法的核心思想是通过模拟鸟群中个体间的相互作用来搜索解空间。每个粒子代表一个可能的解决方案,其位置和速度会随着迭代过程动态调整。算法中包含两个关键参数:惯性权重(Inertia Weight)和学习因子(Learning Factors)。惯性权重控制粒子维持当前运动趋势的程度,而学习因子则影响粒子跟随自身经验和全局最佳经验的趋向。 在本案例中,【优化布局】基于matlab粒子群算法求解带出入的车间布局优化问题【含Matlab源码 011期】.mp4文件可能包含了详细的视频教程,讲解如何利用MATLAB编程实现PSO算法解决这一问题。MATLAB作为一款强大的数值计算和数据可视化工具,非常适合进行优化算法的实现和调试。 MATLAB代码可能会定义粒子群的初始化,包括粒子数量、粒子的位置和速度,以及搜索空间的边界。接着,将设定适应度函数,该函数根据布局方案的优劣评价每个粒子的解。在每次迭代过程中,粒子会更新其速度和位置,同时更新局部最优解和全局最优解。 在迭代过程中,粒子会根据自身历史最优位置(个人最佳,pBest)和群体历史最优位置(全局最佳,gBest)调整其运动方向。通过平衡探索与开发,PSO算法能够有效地避免早熟收敛,从而找到更优的布局方案。 当达到预设的迭代次数或满足其他停止条件时,算法结束,返回全局最优解,即最佳的车间布局方案。此视频教程可能还会涉及如何分析和解释结果,以及如何调整算法参数以获得更好的性能。 利用粒子群算法求解带出入的车间布局优化问题,是将先进的计算方法应用于实际工业问题的典型示例。通过学习和理解这个案例,不仅可以掌握PSO算法的原理和应用,还能加深对车间布局优化问题的理解,为实际生产中的决策提供科学依据。
2024-08-23 21:27:06 3.99MB
1
该软件包包含一组工具,允许使用移动最小二乘算法实时变形和图像。 这是一种无需使用薄板样条算法提供的计算扩展技术即可获得良好图像变形的快速技术。 该算法发表在Scott Schaefer,Travis McPhail,Joe Warren的论文“使用最小二乘法进行图像变形”中
2024-08-23 17:24:10 1.13MB matlab
1
在IT领域,尤其是在图形学和可视化技术中,`VTK`(Visualization Toolkit)是一个非常重要的开源库,用于创建交互式3D图形和可视化应用。本文将详细介绍如何在Windows Forms (`Winform`)环境中使用VTK 9.3.0的x86版本来绘制3D云图。 `VTK9.3.0` 是VTK库的一个更新版本,它提供了大量的数据处理和可视化功能。x86版本是针对32位操作系统的,确保你的开发环境与库文件兼容至关重要。VTK库通常包括Debug和Release两个版本,Debug版本用于调试,Release版本则用于优化性能的最终产品。 在`Winform`应用中集成VTK,你需要先安装VTK的.NET包装器,这是一个允许C#等.NET语言直接调用VTK函数的接口。这通常通过NuGet包管理器或手动添加引用到项目中完成。在这个例子中,你已经拥有了编译好的库文件,可以直接引用它们。 接下来,为了绘制3D云图,我们需要创建一个VTK的渲染窗口(`vtkRenderWindow`),它是VTK图形显示的核心组件。然后,我们创建一个`vtkRenderer`对象,它是负责渲染场景的对象。在`vtkRenderer`中,我们将添加一个`vtkActor`,它表示3D模型并包含几何数据、纹理和其他视觉属性。 云通常由大量散乱的3D组成,这些可以通过`vtkPoints`对象存储。接着,使用`vtkPolyData`结构来组合这些,并创建一个`vtkPointSource`或者自定义`vtkDataSet`来生成云。每个可以有颜色信息,这可以通过`vtkUnsignedCharArray`和`vtkColorSeries`来实现,然后将它们关联到数据上。 为了在`vtkRenderer`中显示云,我们需要一个`vtkMapper`,它将数据转换为可以在屏幕上渲染的形式。对于云,我们可以使用`vtkPolyDataMapper`。将`mapper`和`actor`连接起来,设置渲染器的背景色,然后将渲染器添加到渲染窗口。 在`Winform`中,你需要创建一个控件来承载`vtkRenderWindowInteractor`,这是用户与3D视图交互的方式。你可以创建一个自定义控件,继承自`System.Windows.Forms.Control`,并重写`OnPaint`方法来初始化和显示`vtkRenderWindow`。 代码示例可能如下: ```csharp public class VtkRenderWindowControl : Control { private vtkRenderWindow renderWindow; private vtkRenderWindowInteractor interactor; public VtkRenderWindowControl() { InitializeVTK(); } private void InitializeVTK() { // 创建渲染窗口和交互器 renderWindow = vtkRenderWindow.New(); interactor = vtkRenderWindowInteractor.New(); interactor.SetRenderWindow(renderWindow); // 创建渲染器、云、映射器、演员等 // ... (此处添加上述步骤的代码) // 设置渲染窗口并添加到控件 SetStyle(ControlStyles.ResizeRedraw, true); Size = new Size(640, 480); CreateHandle(); renderWindow.Render(); } protected override void OnPaint(PaintEventArgs e) { base.OnPaint(e); renderWindow.Render(); } } ``` 记得在`Winform`设计界面中添加这个自定义控件,并确保在运行时初始化和更新云数据。至此,你就成功地在`Winform`应用中使用VTK 9.3.0绘制了3D云图。 在实际开发中,你可能还需要处理用户交互、动态数据更新、性能优化等问题。VTK提供了丰富的API和功能,如光照、相机控制、过滤器等,可以帮助你构建更复杂、功能更强大的可视化应用。在使用过程中,务必查阅VTK的官方文档,以便获取最详细的信息和支持。
2024-08-23 12:23:55 139.82MB winform
1
660V中性不接地系统单相接地故障simulink仿真,四条支路,可设置单相或多项相间短路或接地故障,可调节负载,线路长度及电路参数,可查看零序电压电流波形
2024-08-20 19:01:41 56KB 电力系统 simulink
1
这个脚本是一个用于某短视频平台的自动化养号脚本,它的目的是通过模拟用户的常规操作来提高账号的活跃度和互动率。以下是脚本的主要功能和组成部分的说明: 准备:Python环境。安装uiautomator2库 需要ADB工具,Android设备。 脚本功能: 自动观看视频:脚本模拟用户观看视频的行为,根据视频内容随机决定观看时长。 随机赞:根据设定的概率和视频内容决定是否赞。 关注其他用户:同样基于随机概率和视频内容来决定是否关注视频发布者。 发表评论:从预设的评论库中随机选择评论并发表。 核心逻辑: 使用uiautomator2连接Android,并进行元素定位和操作。 通过分析视频标题和描述中的关键词来决定互动。 使用随机数来模拟用户行为的不确定性。 通过ADB命令模拟输入法切换和发送广播,以实现评论的输入和发送。 运行方式: 确保所有环境和依赖项已正确设置。 修改脚本中的设备名称以匹配实际情况。 运行脚本。 注意: 过度自动化可能违反视频App的服务条款,应谨慎使用。 脚本的行为应符合视频App平台的规则和指南。 脚本的稳定性和效果可能受到App版本更新和设备差异的影响。
2024-08-17 18:31:35 8KB android python
1
检测.hdev 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面云,这样我们就可以根据所获得的云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面云,这样我们就可以根据所获得的云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面云,这样我们就可以根据所获得的云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法
2024-08-15 13:36:12 2KB halcon
1