YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)
2024-10-15 22:15:19 229.22MB 目标检测
1
C# OpenCvSharp DNN 部署yolov4目标检测 源码 博客地址:https://blog.csdn.net/weixin_46771779/article/details/136052644
2024-10-13 12:53:31 248.02MB dnn 目标检测
1
软件开发设计:应用软件开发、系统软件开发、移动应用开发、网站开发C++、Java、python、web、C#等语言的项目开发与学习资料 硬件与设备:单片机、EDA、proteus、RTOS、包括计算机硬件、服务器、网络设备、存储设备、移动设备等 操作系统:LInux、树莓派、安卓开发、微机操作系统、网络操作系统、分布式操作系统等。此外,还有嵌入式操作系统、智能操作系统等。 网络与通信:数据传输、信号处理、网络协议、网络与通信硬件、网络安全网络与通信是一个非常广泛的领域,它涉及到计算机科学、电子工程、数学等多个学科的知识。 云计算与大数据:包括云计算平台、大数据分析、人工智能、机器学习等,云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。
2024-10-13 12:43:37 4.99MB python 爬虫 毕业设计 课程设计
1
基于OpenCV+QT实现的啤酒瓶口缺陷检测C++实现源码,缺陷检测算法处理步骤如下: 1.灰度化 2.高斯滤波 3.自适应阈值 4.数学形态学操作 4.查找连通区域 5.找出面积最大的轮廓 6.计算瓶口面积、周长、圆形度特性 7.计算质心位置 8.缺陷判断与结果显示
2024-10-13 12:36:38 4.73MB opencv 缺陷检测
1
在Python编程领域,OpenCV是一个强大的计算机视觉库,它提供了丰富的功能用于图像处理、特征检测、对象识别等任务。在本项目"python opencv检测汽车侧视图"中,我们将会探讨如何利用OpenCV来实现对汽车侧视图的检测。这个项目包括了自定义级联分类器的训练过程,以便于识别出图像中的汽车侧视图。 1. **级联分类器(Cascade Classifier)**:OpenCV中的级联分类器是一种基于AdaBoost算法的特征级分类器,它由多个弱分类器组成,通过串联的方式形成一个强分类器。在这个项目中,级联分类器被用来识别汽车的侧视图。级联分类器的优点在于它可以快速地排除非目标区域,减少计算量。 2. **正负样本(Positive and Negative Samples)**:在训练级联分类器时,我们需要提供大量的正样本(汽车侧视图)和负样本(非汽车图像)。正样本通常包含目标对象,而负样本则不包含。这些样本用于训练模型学习汽车的特征,并区分其他非汽车图像。 3. **XML分类器文件**:在OpenCV中,训练好的级联分类器会保存为XML或YML格式的文件,例如`haarcascade_frontalface_default.xml`等。这个项目中可能也包含了一个训练好的XML文件,用于汽车侧视图的检测。 4. **图像预处理**:在实际应用中,通常需要对输入图像进行预处理,如灰度化、直方图均衡化、缩放等,以便于提高检测的准确性和效率。 5. **滑动窗口(Sliding Windows)**:在检测过程中,OpenCV使用滑动窗口技术遍历图像的每一个可能区域,以寻找匹配分类器特征的区域。窗口大小和步进距离是可调整的参数,根据目标物体的大小和图像分辨率来设定。 6. **特征匹配和边界框(Feature Matching and Bounding Boxes)**:一旦图像中的某个区域被分类器识别为汽车,OpenCV会在该区域周围画出边界框,表示检测到的目标。 7. **多尺度检测(Multi-scale Detection)**:为了检测不同大小的汽车,可以使用多尺度检测,即在不同大小的窗口上应用级联分类器。 8. **性能优化**:为了提高实时检测的速度,可以采用并行处理(如多线程或GPU加速)、NMS(Non-Maximum Suppression)来消除重叠的边界框等技术。 9. **实际应用**:这样的汽车侧视图检测技术可以应用于自动驾驶、交通监控、智能停车场系统等领域,帮助识别和跟踪道路上的车辆。 通过这个项目,你可以深入理解OpenCV的级联分类器工作原理,以及如何利用它来训练和应用自定义的模型。同时,你还将学会图像处理和对象检测的基本流程,这些都是计算机视觉领域的重要基础知识。
2024-10-13 12:27:25 14.97MB opencv
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-12 20:12:03 3.99MB matlab
1
【PDCare: MATLAB步态检测代码详解】 步态检测是一种生物特征识别技术,通过分析个体行走时的特征来辨识或验证身份。在医疗、安全监控和人机交互等领域有着广泛的应用。PDCare是一个基于MATLAB实现的步态检测系统,其开源特性使得研究者和开发者可以深入理解并拓展相关算法。 1. **MATLAB环境** MATLAB(矩阵实验室)是MathWorks公司开发的一种编程环境,特别适合于数值计算、符号计算、数据分析以及图像处理等任务。在PDCare项目中,MATLAB被用来处理和分析步态数据,实现步态检测功能。 2. **步态检测基础** 步态检测通常包括步态序列获取、预处理、特征提取和模式匹配四个主要步骤。PDCare系统可能涵盖了这些环节,例如: - **序列获取**:可能使用摄像头或其他传感器捕捉行走者的连续视频或图像序列。 - **预处理**:包括灰度化、去噪、平滑处理等,提高后续处理的准确性。 - **特征提取**:可能包含步长、步宽、周期时间、关节角度变化等关键参数。 - **模式匹配**:使用模板匹配或机器学习方法将提取的特征与已知步态模型进行比较,以识别个体。 3. **PDCare-master项目结构** 在PDCare-master这个压缩包中,包含了项目的源代码、数据集、文档和其他资源。通常,源代码会分为不同的函数或类,分别对应系统的不同模块。例如,可能会有用于数据读取的函数、特征提取的脚本、训练和测试模型的程序等。 4. **系统开源的优势** - **可扩展性**:开源意味着用户可以根据需求修改和扩展代码,增加新的功能或优化现有算法。 - **学习资源**:提供了一个学习步态检测算法的实际案例,帮助初学者理解和实践。 - **协作与贡献**:开发者可以互相分享经验,共同改进项目,推动技术发展。 5. **应用场景** PDCare系统可能适用于多种场景,如老年人健康监测(判断步态异常可能的疾病)、智能家居安全(识别家庭成员)、智能安防(监控区域内的人员识别)等。 6. **挑战与未来方向** 尽管PDCare提供了基础的步态检测功能,但在实际应用中仍面临一些挑战,如光照变化、遮挡、多人同时行走等问题。未来的研究可能涉及深度学习技术的引入,提高识别的准确性和鲁棒性。 通过深入研究和理解PDCare的源代码,开发者不仅可以掌握步态检测的基本流程,还能了解到MATLAB在生物特征识别中的应用,为相关领域的研究和创新打下坚实基础。
2024-10-12 17:17:59 9KB 系统开源
1
1、可使用Modbus等协议对检测数据进行读取 2、可对检测数据使用212协议上传 3、可接入摄像头,进行实时监控 4、可对读取数据进行保存,可进行历史数据查询、曲线展示 5、可配置流程图,对仪器运行信息进行图像展示 6、可添加动作,多设备进行反控 7、可添加定时任务,将按照定时任务配置进行动作
2024-10-11 15:02:42 5.25MB 数据采集 上位机软件 环境检测
1
在图像处理领域,基于MATLAB的图像识别是一个重要的应用方向,尤其在自动化和机器视觉系统中。本项目涉及的核心知识点包括图像预处理、特征提取、形状识别和缺陷检测。 MATLAB作为强大的数学和计算工具,其图像处理工具箱为开发者提供了丰富的函数和算法,使得图像识别变得相对容易。在“基于matlab编写的图像识别(正方形、三角形、圆形)”项目中,MATLAB被用来读取、显示和分析图像。 图像预处理是图像识别的第一步,它包括噪声去除、平滑滤波、直方图均衡化等操作,目的是提高图像的质量,使后续的特征提取更为准确。例如,可以使用MATLAB的`imfilter`函数进行滤波,`grayeq`进行直方图均衡化,以增强图像的对比度。 特征提取是识别过程的关键,它从图像中提取出对识别有重要意义的信息。对于形状识别,可能涉及到的特征包括边缘、角点、形状轮廓等。MATLAB的边缘检测函数如`edge`(Canny算法)、`imfindcircles`和` bwlabel`(用于标记和查找连通组件)可以有效地帮助我们找到图像中的形状边界。 形状识别通常基于几何特性,如边长、角度、圆度等。例如,通过测量边界框的长宽比和角度,可以区分正方形和矩形;利用霍夫变换检测直线和圆弧,可识别三角形和圆形。在MATLAB中,`regionprops`函数可以计算形状的各种属性,帮助判断其类型。 缺陷检测是针对形状不完整或有瑕疵的情况。这可能需要结合模板匹配、机器学习等方法。如果形状有缺失部分,MATLAB的`normxcorr2`可用于模板匹配,找出图像中与缺陷模板相似的部分。而机器学习如支持向量机(SVM)或神经网络可以训练模型,对异常区域进行分类。 在实际应用中,为了便于调试和测试,项目提供了一系列的测试图像,这些图像可以直接运行MATLAB代码进行分析。通过调整参数和优化算法,可以提高识别的准确性和鲁棒性。 这个MATLAB项目涵盖了图像处理的基础知识,包括图像预处理、特征提取、形状识别和缺陷检测,是学习和实践图像处理技术的好例子。通过理解和掌握这些概念,开发者可以构建自己的图像识别系统,应用于更复杂的场景,如工业检测、医疗影像分析等领域。
2024-10-10 20:48:20 11.93MB matlab 图像处理 图形检测 缺陷检测
1
在图像处理领域,边缘检测是至关重要的一步,它能够帮助我们识别和定位图像中的边界,这些边界通常对应着图像中的重要特征。本话题主要聚焦于使用MATLAB进行图像边缘检测,特别是Zernike矩在亚像素边缘检测中的应用。Zernike矩是一种描述形状和结构的数学工具,尤其在光学和图像分析中被广泛使用。 我们要理解Zernike矩的基本概念。Zernike矩是从图像的像素强度分布中提取的一组系数,它们能够表征图像的形状特性,如中心位置、旋转不变性和形状参数等。在边缘检测中,Zernike矩的优势在于它们对形状的敏感性,可以精确地捕捉到边缘信息。 亚像素边缘检测是相对于传统像素级边缘检测的一个概念,它能提供比单个像素更精细的边缘定位。在亚像素级别,边缘的位置可以精确到小于一个像素的精度,从而提高边缘检测的准确性和细节分辨率。在MATLAB中,有多种算法可以实现亚像素边缘检测,例如Canny算法、Laplacian of Gaussian (LoG) 方法以及基于Zernike矩的方法。 本资源提供的MATLAB源码可能包含以下步骤: 1. **预处理**:图像通常需要经过归一化、平滑滤波(如高斯滤波)等预处理,以减少噪声并平滑图像。 2. **Zernike矩计算**:对处理后的图像,计算其Zernike矩。这一步涉及对图像的离散采样点进行操作,然后通过特定的数学公式求得各阶Zernike矩。 3. **边缘检测**:利用Zernike矩的特性,确定边缘的位置。这可能包括寻找矩变化的显著点,或者通过拟合Zernike矩来估计边缘位置。 4. **亚像素细化**:在确定了初步边缘位置后,通过某种亚像素定位算法(如梯度、二阶导数或曲线拟合)来提高边缘定位精度。 5. **后处理**:可能会进行边缘连接、边缘细化和噪声去除等后处理步骤,以获得更清晰、连贯的边缘。 视频教程“【图像边缘检测】matlab Zernike矩亚像素边缘检测【含Matlab源码 1536期】.mp4”很可能是对以上过程的详细讲解,包括理论解释、代码实现和实际应用案例。通过学习这个教程和源码,你将能够深入理解Zernike矩在亚像素边缘检测中的作用,并能够应用于自己的图像处理项目。 Zernike矩亚像素边缘检测是一种高级的图像处理技术,结合MATLAB的强大功能,可以在诸如医学影像分析、工业检测、机器人视觉等领域发挥重要作用。通过学习和实践,你将能够掌握这种高效且精确的边缘检测方法,提升图像处理能力。
2024-10-10 10:13:35 1.89MB
1