这是一份模拟了阵列输入信号及噪声,并验证了相对于阵列接收到的信号,阵列输出信号可以将信噪比提高M倍,其中M为阵列的阵元个数的代码。 代码中可以随意修改阵元个数、阵元间距、波束指向角度、信号频率等。 代码中关键部分均含有文字注释,完全不必担心看不懂。 无论是从仿真波形,还是计算的信噪比结果均能看出阵元数为M的阵列将信号的信噪比提高了M倍。
2025-04-11 18:24:26 1KB 阵列天线 MATLAB
1
KlakSpout 是一个 Unity 插件,允许 Unity 使用 Spout 系统发送/接收视频流。 您可以使用 Spout Sender 组件发送视频流。有三种捕获方法可用: Game View: Captures the content of the Game View. 游戏视图:捕获游戏视图的内容。 Camera: Captures a specified camera. 相机:捕获指定的相机。 Texture: Captures a 2D texture or a Render Texture. 纹理:捕获 2D 纹理或渲染纹理。
2025-04-02 13:56:40 463KB unity Spout
1
SCSR120是一款基于超再生原理的集 成无线接收芯片。SCSR120内部集成了低压 差线性稳压器,带隙基准电流源,前置低噪 声放大器,超再生振荡器,熄灭信号发生器, 包 络 检 波 解 调 器 等 电 路 。 芯 片 工 作 在 315MHz/433MHz的ISM(Industrial, Scientific and Medical)频段,采用OOK(On Off Keying) 调制方式。 芯片将接收到的RF信号解调,输出 CMOS电平数据信号,做到了“数据入,数 据出”。芯片工作电压为2.7~5.5V,正常工 作消耗电流典型值为2.2mA,典型灵敏度优 于-98dBm。最大数据速率为10Kbit/s,工作 温度范围-40°C至+85°C,提供SOP8封装。
2025-03-29 13:08:00 725KB 315MHz 433MHz 无线接收
1
介绍DVB-S2广播接收机的论文,主要是符号同步技术的介绍,并且介绍了相应FPGA实现方面的方法。
2025-03-28 10:54:33 1.98MB DVB-S2 接收机同步 FPGA
1
标题中的“38k红外发射接收电路图”指的是一个使用38kHz频率的红外通信电路设计。在电子工程中,红外技术广泛应用于遥控器、无线传感器网络和数据传输等领域。38kHz是一种常见的载波频率,用于编码和解码红外信号,确保数据传输的准确性。 38kHz红外发射部分通常包括以下几个关键组件: 1. **微控制器**:负责生成要发送的数据,并将其调制成38kHz的信号。常见的微控制器如Arduino或PIC系列。 2. **38kHz振荡器**:由晶体振荡器或RC(电阻-电容)电路构成,产生精确的38kHz方波。555定时器常被用来创建这样的振荡器,通过调整电阻和电容的值来设定频率。 3. **驱动晶体管**:放大微控制器输出的信号,使其有足够的功率驱动红外LED。晶体管的选择应根据LED的电流需求和微控制器的输出能力。 4. **红外LED**:发射38kHz红外光的元件,其方向性很重要,确保红外信号直接指向接收端。 接收部分通常包括: 1. **光敏三极管或光电二极管**:接收红外信号并转换为电信号。 2. **带通滤波器**:设计为只允许38kHz的信号通过,滤除环境噪声和其他频率的干扰。 3. **放大器**:提升信号强度,使其可以被微控制器正确读取。 4. **解码器**:解码接收到的38kHz信号,恢复原始数据。这通常是一个专门的集成电路,如NEC IR解码器,用于处理特定的红外编码格式。 描述中提到的“555那里的阻值要改”,意味着555定时器的电阻配置需要调整,以适应作者的Protel设计工具可能无法正确处理的情况。555定时器的振荡频率由两个外部电阻和一个电容决定,通过改变这些元件的值可以调整振荡频率。如果Protel key出现问题,可能需要手动计算电阻值,或者更换其他设计工具来完成电路设计。 标签“38k 红外 电路”进一步强调了这个电路涉及的是38kHz频率的红外通信技术,包括发射和接收电路的设计。 压缩包内的文件“38k.SchDoc”很可能是一个电路原理图文档,可能包含了38kHz红外发射接收电路的详细设计。这种文件通常由电路设计软件(如Altium Designer或EAGLE)生成,其中包含了电路的元件布局和连接关系。 38kHz红外发射接收电路涉及的知识点涵盖了微控制器编程、模拟电路设计(如振荡器和放大器)、数字信号处理(解码)以及红外通信协议。实际应用时,需要考虑环境干扰、信号传输距离和电源管理等问题,以确保系统的可靠性和效率。
2025-01-09 15:22:34 13KB
1
TCP客户端大多都是异步操作,发送数据后只能在回调里处理,而有一些特殊业务可能需要发送后同步返回。 部分模块或支持库也有同步返回,但只支持单线程单包返回,经常看到有人在问这方面的问题 所以吃完粽子后趁消化之余闲着没事就顺手写了个  多线程TCP发送数据同步接收 实现思路: 1:发送数据前取一个唯一标识,和创建一个事件,保存该事件ID和唯一标识放到数组里 2:把唯一标识写入到数据里一并发送到服务器,然后调用事件等待 3:服务器接收到数据后处理完相关命令ID,在发回给客户端的数据里带上客户端发来的唯一标识 4:客户端收到数据时取出 唯一标识,再到数组里通过唯一标识取出 事件ID,再把数据放到数组里,触发事件ID,另外线程那边发送的就能收到通知了。 5:在发送线程收到事件触发后,根据唯一标识在数组里取出服务器返回的数据,再释放事件ID和删除相关缓存数据 这样就完成了发送数据后同步接收过程 TCP套件用的是  客户端/服务器组件 代码包含了 组包/拆包 该思路方法通用于所有TCP模块或支持库,如有需要请自行移植!
2024-12-02 23:50:16 11KB 网络相关源码
1
下载、解压、将C:\Windows\System32\drivers下的SVNDrv.sys替换掉即可
2024-11-22 19:27:42 26KB windows
1
硬件平台:STM32F4系列 程序设计:基于STM32HAL库,UART DMA方式接收与发送,串口数据缓存使用lwrb(FIFO),接收与发送的数据实现零拷贝,为了单片机使用效率,可以参考。 测试验证:上位机向两个串口进行1ms定时发送1024字节,百万数据量收发正常
2024-10-07 11:43:23 31.24MB stm32 UARTDMA FIFO UART
1
Ci24R1测试程序-基本通信.rar,可以做DEMO测试,CR24R1,无线发射接收,2.4G,蓝牙 Ci24R1是一颗工作在2.4GHz ISM频段,专为低成本无线场合设计,集成嵌入式ARQ 基带协议引擎的无线收发器芯片。工作频率范围为 2400MHz-2525MHz,共有 126个 1MHz 带宽的信道。 Ci24R1 采用 GFSK/FSK 数字调制与解调技术。数据传输速率与 PA 输出功率都可以调节,支持 2Mbps,1Mbps,250Kbps 三种数据速率。高的数据速率可以在更短的时间完成同样的数据收发,因此可以具有更低的功耗。
2024-09-01 23:31:31 232KB 2.4g 发射接收
1
### GNSS反射信号接收与处理方法研究 #### GNSS反射信号接收机设计的关键技术 全球导航卫星系统(Global Navigation Satellite System,简称GNSS)作为现代科技的重要组成部分,在多个领域发挥着重要作用。随着技术的发展,研究人员发现GNSS信号不仅可以通过直接路径进行定位,还可以通过反射路径获取有价值的信息,这一技术被称为GNSS反射信号技术(GNSS2R)。本文旨在探讨GNSS反射信号接收机设计的关键技术和其在不同领域的应用。 #### GNSS反射信号技术概述 GNSS反射信号技术是一种利用卫星信号反射回地面的信息来获取地球表面特征的技术。通常情况下,卫星信号经过地面或其他物体反射后,会携带关于反射表面的物理特性的信息,例如海洋表面的状态、土壤湿度等。通过对这些反射信号的接收与处理,可以实现对地球表面环境的监测。 #### 关键技术分析 **1. 接收机设计** - **特殊设计的接收机**:传统的GNSS接收机设计主要用于接收卫星发射的直射信号,对于反射信号的处理能力有限。因此,需要专门设计能够有效捕获和跟踪反射信号的接收机。这类接收机通常配备更灵敏的传感器和更复杂的信号处理算法。 - **软件接收机**:软件定义的接收机能够灵活地配置接收参数,并通过软件实现信号处理功能,这使得它们非常适合于GNSS反射信号的研究。软件接收机可以动态调整接收模式,以适应不同的反射信号特性。 **2. 信号处理方法** - **信号识别与分离**:由于反射信号通常较弱且受到复杂环境因素的影响,如何从众多信号中准确地识别和分离出反射信号是一个挑战。常用的方法包括相关性分析、匹配滤波器等技术。 - **信号强度与特征分析**:反射信号的强度和形状与其反射表面的特性密切相关。通过对这些信号进行细致分析,可以提取出关于反射表面的有用信息。 - **反演模型开发**:为了从反射信号中提取具体物理参数,如海面风速、土壤湿度等,需要建立准确的反演模型。这些模型基于电磁波理论和其他物理学原理,结合实际观测数据进行校正和完善。 #### GNSS2R的应用领域 - **海面测高**:通过分析卫星信号在海面上的反射情况,可以精确测量海平面高度的变化,这对于研究海洋动力学过程至关重要。 - **海面风场遥感**:GNSS反射信号可以用来估计海面风速和风向,这对于气象预报和海洋环境监测具有重要意义。 - **土壤湿度探测**:反射信号的强度与土壤湿度有关,因此该技术也可用于监测土地水分状况,为农业灌溉管理提供支持。 #### 发展前景与挑战 尽管GNSS反射信号技术已经取得了一定的进展,但仍然面临着诸多挑战,如提高信号处理效率、增强接收机性能、完善反演模型等。未来的研究将着重于解决这些问题,同时探索更多的应用场景,如灾害监测、气候变化研究等。随着技术的不断进步和应用领域的扩展,GNSS反射信号技术有望成为地球观测领域的一项重要工具。
2024-08-29 13:06:16 302KB
1