成分分析的经典著作,由Svante Wold和Kim.H.Esbensen完成
2022-11-03 22:54:46 1.6MB 主成分分析
1
秦寿松 著,介绍了几种综合评价及分类方法的理论、算法和应用,综合评价现代化中存在的问题及解决办法。可作为系统工程、经济管理、应用数学、自动控制等专业高年级学生和研究生的教材或教学参考书。另外对数学建模爱好者也是一个不可多得的资源。
1
因子分析实例322-旋转Rotation 由于系数没有很明显的差别,所以要进行旋转(Rotation:method一般用Varimax方差最大旋转),使系数向0和1两极分化, 例子同上 菜单:Analyze-Data Reduction-Factor Variables :pop,School,employ,Services, house Extraction:使用默认值( method:Principal components,选取特征值>1) Rotation:method选Varimax Score:Save as variables 和Display factor score Coefficient matrix 比较有用的结果:两个主成分(因子)f1,f2及旋转后的因子载荷矩阵(Rotated Component Matrix) ,根据该表可以写出每个原始变量(标准化值)的因子表达式: Pop 0.01602 f1 + 0.9946f2 School  0 .941f1 - 0.00882f2 employ  0.137f1 + 0.98f2 Services  0.825f1 +0.447f2 house  0.968f1 - 0.00605f2 第一主因子对中等学校平均校龄,专业服务项目,中等房价有绝对值较大的载荷(代表一般社会福利-福利条件因子); 而第二主因子对总人口和总雇员数有较大的载荷(代表人口-人口因子). P326 比较有用的结果:因子得分fac1_1, fac2_1。其计算公式:因子得分系数和原始变量的标准化值的乘积之和(P326)。然后可以利用因子得分进行聚类p327(Analyze->Classify->Hierarchical Cluster)。
2022-10-31 19:39:52 1013KB SPSS PCA
1
成分分析降维代码,完整版,可以直接放进matlab运行。
2022-10-29 11:08:25 18KB 主成分分析降维代码 降维
1
利用python求解2022国赛C玻璃文物化学成分分析与鉴别的完整论文
2022-10-21 18:03:52 1.59MB 数模 高社教杯 国赛 python
1
matlab中的pinv代码快速耐用PCA的IRCUR 这是Matlab的快速非凸鲁棒主成分分析(RPCA)算法的仓库,它被称为迭代鲁棒CUR(IRCUR)[1]。 为了正确显示数学符号,可能必须安装MathJax插件。 例如, 。 稳健的主成分分析 在此项目中,我们将重点放在完全观察到的设置下的RPCA问题上,即分离\ mathbb {R} ^ {m \ times n} $中的低秩矩阵$ L \和\ mathbb中的稀疏离群矩阵$ S \ {R} ^ {m \ timesn} $,根据它们的总和$ D = L + S $。 加速的关键思想 我们使用快速CUR分解代替低秩逼近,并重新设计了经典交替投影框架中的所有昂贵步骤,以将计算复杂度降低至$ O(\ max \ lbrace m,n \ rbrace r ^ 2 \ log(m) \ log(n))$翻牌圈。 更多细节可以在我们的论文中找到[1]。 Syntex 使用所有默认参数: [C, pinv_U, R, ircur_timer, ircur_err] = IRCUR( D, r, ''); 使用自定义参数: para.be
2022-10-19 16:30:09 5KB 系统开源
1
看我如何做基于主成分分析的模式识别系统的设计与实现.pdf看我如何做基于主成分分析的模式识别系统的设计与实现.pdf看我如何做基于主成分分析的模式识别系统的设计与实现.pdf看我如何做基于主成分分析的模式识别系统的设计与实现.pdf
1
基于主成分分析的压缩和重建,适合初学者,程序可以运行
2022-10-17 16:50:59 2KB 图像重建 主成分分析 图像压缩
1
matlab代码影响BD-RPCA 该MATLAB软件包是脚本的集合,允许在论文[1]中生成图形(图1和图2a-2e)。 本文探讨了从超声图像的超快速序列中进行高分辨率多普勒血流估计的问题。 将杂波和血液成分的分离公式化为一个反问题已在文献中显示,它是基于时空奇异值分解(SVD)的杂波滤波的良好替代方法。 特别地,最近已经在这样的问题中嵌入了去卷积步骤,以减轻成像系统的实验测量的点扩展函数(PSF)的影响。 在这种情况下显示去卷积可以提高血流重建的准确性。 但是,测量PSF要求非平凡的实验设置。 为了克服这个限制,我们在这里提出一种盲反卷积方法,该方法能够从多普勒数据中估计血液成分和PSF。 与基于实验测量的PSF的先前方法和其他两种最新方法相比,对模拟和体内数据进行的数值实验从定性和定量方面证明了该方法的有效性。 指示 将包下载为.zip文件(单击上方的绿色代码),然后将其解压缩。 请注意,解压缩的文件夹的名称应为BD-RPCA 。 将MATLAB的当前文件夹设置为此解压缩的文件夹,即BD-RPCA 。 从以下链接下载所有模拟数据:然后将它们放入“数据”文件夹中 运行[1]中与每个图
2022-09-27 18:49:40 8.15MB 系统开源
1
将图像进行主成分分析,并显示第一主成分,方法很好用的
2022-09-21 22:00:33 10KB pca 主成分 主成分分析 图像_pca