摘要: 介绍了一种以PWM 控制芯片UC3825为核心的低压大电流开关电源的设计方案, 阐述了主电路的拓扑结构及主控制电路的电路设计, 并设计了软启动及过压过流保护电路, 应用反馈手段和脉宽调制技术实现了电压、电流的稳定输出, 并研制了1台15 V /1 200 A的样机。   1  开关电源的设计   开关电源的基本结构主要由7部分组成: 输入整流滤波电路、高频开关变换器电路、整流输出电路、控制电路、保护电路、辅助电源以及显示电路。   1.1  主电路   该设计的主电路拓扑结构如图1 所示, 输入市网220 V 电压, 通过RC 滤波及整流桥整流、全桥逆变、高频变压器、输出整流以 本文主要探讨了一种基于PWM控制芯片UC3825的低压大电流开关电源的设计方案,该方案特别适用于需要处理大电流、低电压的场合。开关电源作为一种高效能的电力转换设备,其基本构造包含了输入整流滤波电路、高频开关变换器、整流输出电路、控制电路、保护电路、辅助电源以及显示电路等多个关键部分。 1. 输入整流滤波电路(AC/DC) 输入电路首先通过RC滤波器消除市电中的高频干扰和浪涌电流,以确保电路的稳定工作。接着,整流桥将交流电压转换为直流电压,经过滤波电容进一步平滑输出,提供后续电路使用。 2. 高频开关变换器(DC/AC) 这是开关电源的核心,采用全桥逆变电路,四个IGBT(绝缘栅双极型晶体管)与高速功率二极管并联,用于减少电压尖峰,保护开关元件。IGBT因其低通态电压、高耐压、高速和简单驱动特性而被选用。通过PWM信号控制IGBT的导通和关断,将直流电压转换为高频交流电。 3. 输出整流滤波(AC/DC) 通过高频隔离变压器输出的交流电压,经过肖特基二极管整流和LC滤波器滤波,以输出稳定的直流电压。同时,输出端的分流器监控电压,反馈至控制电路进行精确调节。 4. 控制电路 UC3825作为核心控制芯片,其内部集成了振荡器、PWM比较器、锁存器、驱动器等多种功能,可实现高精度的电压和电流控制。UC3825的软启动和欠压锁定功能保证了电源的平稳启动和安全运行。通过调整PWM脉冲的占空比,可以控制输出电压的大小,同时设置适当的死区时间以避免桥臂短路。 5. 保护电路 设计中还包含了软启动和过压过流保护电路,以防止电源在异常情况下受损。软启动电路使得电源在启动时逐步增加输出,而过压过流保护则会在电压或电流超出预设范围时迅速响应,保护电路免受损害。 通过以上设计,作者成功研制出了一台15V/1200A的开关电源样机,证明了这种设计方案的可行性和有效性。在实际应用中,针对IGBT驱动电路的优化对于确保整体系统性能和寿命至关重要,因为它直接影响到开关管的开关速度和可靠性。因此,选择合适的驱动电路设计和元件参数至关重要,以确保开关电源能够在各种工况下稳定、高效地工作。
2025-04-10 12:13:17 329KB 元器件应用
1
1、元器件准备 2、机智云固件烧录 3、机智云平台配置 4、代码移植 5、APP配网操作 包括机智云固件,ESP8266烧录软件,程序源码等文件,教程见我博客链接:https://blog.csdn.net/m0_65296597/article/details/146229566?spm=1001.2014.3001.5501 本文教程详细介绍了如何将STM32微控制器与ESP8266 Wi-Fi模块连接到机智云平台,实现温湿度数据的上传以及远程控制继电器的开关。在进行该操作前,用户需要准备必要的硬件元件,包括STM32开发板、ESP8266模块、温湿度传感器等。接着,需要将机智云提供的固件烧录到ESP8266中,这一步骤对于让ESP8266能够连接到机智云并进行数据通信至关重要。 成功烧录固件后,接下来就是登录机智云平台进行配置,这一环节包括创建设备、设置数据点以及生成必要的认证信息。本教程强调了代码移植的重要性,即将生成的代码适应于STM32平台,以便能够正确读取传感器数据并控制继电器。 在代码移植完成后,用户还需进行APP配网操作,这是为了让最终用户能够通过手机APP远程控制ESP8266设备,并且查看从传感器收集到的温湿度数据。整个过程不仅涉及硬件的操作,还需要用户具备一定的编程能力,以便在STM32上移植和运行代码。 为了方便用户操作,本教程还提供了机智云固件、ESP8266烧录软件以及程序源码等文件,用户可以直接下载使用。此外,教程中提到的博客链接提供了详细的步骤说明和操作指南,方便用户在遇到问题时查找解决方案。 整体而言,本教程是一套完整的操作指南,从硬件准备到软件配置,再到代码实现和APP操作,涵盖了将STM32和ESP8266连接到机智云平台的所有步骤。它适合有一定硬件和编程基础,希望实现物联网项目的开发者和爱好者。
2025-04-10 11:06:23 31.67MB STM32 ESP8266
1
射频开关是无线通信系统中的重要组成部分,它主要用于在不同信号源或负载之间切换,以控制射频信号的传输路径。在深入理解射频开关的知识之前,我们需要先了解射频的基本概念。射频(RF)是指频率在3kHz到300GHz之间的电磁波,这些波段覆盖了无线电通信、电视广播、移动通信等多个领域。 射频开关的主要功能包括: 1. **多路复用**:在多个输入信号之间进行选择,允许一个选定的信号通过到输出端,而其他信号则被隔离。这在多频段通信设备中非常常见,如手机、卫星接收器等。 2. **功率管理**:根据系统需求,射频开关可以开启或关闭射频路径,以节省能源或保护下游组件免受过强信号的影响。 3. **信号切换**:在不同的天线或天线阵列之间切换,以优化无线信号的发射和接收效果。 射频开关的技术特性主要包括: - **开关类型**:主要有机械开关、固态开关(如PIN二极管、MESFET、GaN HEMT等)和MEMS(微机电系统)开关。固态开关因其高速、低损耗和可靠性高而广泛应用。 - **工作频率范围**:射频开关的工作频率决定了它可以处理的信号范围。不同的应用可能需要从几十MHz到几十GHz的开关。 - **插入损耗**:这是衡量信号通过开关后强度衰减的指标,低的插入损耗意味着更好的信号保真度。 - **隔离度**:隔离度是指在开关关闭时,两个端口间的信号泄漏程度。高隔离度能确保信号不会互相干扰。 - **切换速度**:对于高速通信系统,快速切换时间是关键参数,它决定了系统的响应能力。 - **耐功率**:射频开关需要承受的输入功率大小,过高的功率可能导致开关损坏。 射频开关的应用广泛,涵盖了从简单的家用Wi-Fi路由器到复杂的军事雷达系统。在设计射频系统时,选择合适的射频开关至关重要,因为它直接影响系统的性能和效率。 例如,射频开关在移动通信基站中用于选择不同频段的信号,实现多频多模操作;在无线测试设备中,它们用于在测量不同信号源之间切换;在卫星通信系统中,射频开关用于在不同卫星信号之间切换,确保通信的稳定。 射频开关是现代无线通信技术的基石,其性能直接影响到通信质量、效率和可靠性。深入理解和掌握射频开关的知识,对于从事相关领域的工程师来说是必不可少的。
2025-04-09 11:11:28 8KB 射频开关
1
### 基于UC3842反激式开关电源的设计 #### 摘要与背景 随着电力电子技术的迅速发展,电力电子设备在工作和生活中扮演着越来越重要的角色。电子设备对于可靠电源的需求日益增加。特别是自20世纪80年代以来,计算机电源已经全面实现了开关电源化,完成了电源技术的重大变革。开关电源通过控制开关晶体管的开通与关断时间比来维持稳定的输出电压。通常,这种类型的电源由PWM控制IC和MOSFET构成。 本文介绍了一款基于UC3842开关电源芯片设计的新型单端反激式、宽电压输入范围、固定输出电压为12V8A(即96W)的开关稳压电源。该电源适用于需要较大电流的直流场合,例如为汽车电瓶充电。 #### 关键词解析 - **开关电源(Switching Power Supply)**: 利用现代电力电子技术,通过控制开关晶体管的开断时间比例来维持输出电压稳定。 - **反激变换(Instead Stir Up Transformation)**: 反激式变换器是一种常见的非隔离型DC/DC变换器,适用于小功率场合。它能在输入电压高于或低于输出电压时工作。 - **RCD箝位(RCD Clamp)**: RCD箝位电路用于减少反激式变换器中的电压尖峰,保护开关管不受过压损坏。 - **UC3842**: 这是一款专为离线电源和DC/DC转换器设计的高度集成的PWM控制器,适用于高性能、高效率的开关电源设计。 #### 设计原理 UC3842是一种高度集成的PWM控制器,具有多种功能,包括软启动、电流限制、故障保护等。在反激式变换器设计中,UC3842能够精确控制开关频率,从而实现高效的能量转换。UC3842芯片的典型应用电路包括: - **软启动**: 通过内部软启动电路,可以控制启动过程中的电流上升速度,避免过大的冲击电流。 - **电流限制**: UC3842内置了电流限制功能,可以在负载变化时自动调整输出电压,确保系统的稳定性。 - **故障保护**: 包括过温保护、过流保护等功能,增强了系统的可靠性。 #### 系统框图与工作原理 实现本设计的核心部分在于PWM芯片的选择及其应用。UC3842作为设计的核心元件,在系统框图中起到至关重要的作用。系统框图显示了整个开关电源的组成部分,包括输入电源、PWM控制器、驱动电路、主开关、变压器、输出整流滤波等关键组件。 - **输入电源**: 提供宽范围的输入电压,以便适应不同的应用场景。 - **PWM控制器(UC3842)**: 控制主开关的通断,调节输出电压。 - **驱动电路**: 将PWM信号放大,驱动主开关(MOSFET)。 - **主开关(MOSFET)**: 在PWM信号的控制下,实现能量的转换。 - **变压器**: 实现电压变换和电气隔离。 - **输出整流滤波**: 整流滤波后的输出电压提供给负载。 #### 技术特点 - **高效率**: 采用UC3842的开关电源能够在较宽的输入电压范围内保持高效率。 - **宽输入电压范围**: 支持从9V到36V的输入电压范围。 - **稳定的输出**: 即使在输入电压波动较大的情况下,也能保持稳定的12V输出电压。 - **保护功能**: 内置过流保护、过温保护等多种保护机制,提高了系统的安全性和可靠性。 #### 应用场景 - **汽车电子**: 如为汽车电瓶充电、车载电子设备供电等。 - **工业控制**: 适用于需要稳定电源的各种工业控制场合。 - **通信设备**: 为通信基站、数据中心等提供稳定的电源支持。 基于UC3842的反激式开关电源设计不仅满足了现代电子设备对于高效、可靠电源的需求,而且其广泛的输入电压范围和稳定的输出特性使其成为多种应用场景的理想选择。
2025-04-08 17:01:42 216KB 基于UC3842反激式开关电源的设计
1
基于SRM开关磁阻电机电流斩波控制的软件仿真研究——转速电流双闭环Matlab Simulink仿真模型及其应用文档与参考文献,基于SRM的开关磁阻电机电流斩波控制技术研究:双闭环控制策略的Matlab Simulink仿真模型与文档实现,SRM 开关磁阻电机电流斩波控制 软件仿真 转速电流 双闭环 matlab simulink 仿真 模型 含有文档可直接用的那种,需要的话还可提供参考文献 ,SRM; 开关磁阻电机; 电流斩波控制; 软件仿真; 转速电流双闭环; Matlab Simulink仿真; 模型; 参考文献,SRM开关磁阻电机电流斩波控制与双闭环仿真模型研究
2025-04-07 09:57:28 1.55MB rpc
1
反激式变压器开关电源电路参数计算pdf,
2025-04-05 21:32:31 521KB 开关电源
1
反激式开关电源是一种广泛应用的电源转换器设计,尤其在低功率应用中,如电子设备、通信设备和消费电子产品中。这种电源结构以其简洁、高效和成本效益高的特性而受到青睐。本文将深入探讨反激式开关电源的设计原理、关键参数计算及分析方法。 反激式开关电源的基本工作原理: 反激式开关电源由开关器件(通常是MOSFET或IGBT)、变压器、电感、电容等核心组件构成。在开关周期中,当开关器件导通时,能量通过变压器初级线圈储存于磁芯中;当开关断开时,磁能通过变压器次级释放到负载,为负载供电。由于变压器磁通方向的改变,这种设计允许输入和输出电压极性相反,因此称为“反激”。 设计反激式开关电源的关键步骤: 1. **确定输出功率**:首先需要知道电源需要提供多少功率,这将决定其他组件的选择,如变压器的大小、电容容量和开关器件的额定电流。 2. **选择开关频率**:开关频率影响电源的尺寸和效率。较高的频率可以减小变压器和滤波电容的尺寸,但会增加开关损耗。一般情况下,开关频率在几十到几百kHz之间。 3. **设计变压器**:变压器是反激电源的核心,需要考虑磁芯材料、线圈匝数比、初级和次级电感以及漏感。磁芯的选择应基于工作频率和所需功率,以确保最小的损耗。初级和次级线圈的匝数比决定了输入和输出电压的关系。 4. **计算电容和电感值**:电容用于滤波和稳定输出电压,电感则与变压器配合存储和释放能量。电容值的计算涉及输出纹波电压的容忍度,而电感值则取决于开关频率和变压器的漏感。 5. **确定保护机制**:为了防止过压、过流和热过载,需要在设计中加入保护电路,如过电压保护(OVP)、过电流保护(OCP)和热关断。 6. **效率优化**:通过选择合适的开关器件、优化控制策略以及热管理,可以提高电源的效率。此外,轻载和重载条件下的效率也需考虑。 计算分析方法: 在设计过程中,需要进行以下计算: - **磁芯窗口面积和线径计算**:根据变压器的功率和频率来确定磁芯的窗口面积,进而计算线径。 - **变压器漏感计算**:漏感会影响输出电压纹波和瞬态响应,需要通过变压器结构和线圈参数计算。 - **开关器件的开通和关断时间**:这些参数影响开关损耗和电磁干扰(EMI)。 - **稳态和瞬态性能分析**:通过电路模型和模拟工具,如SPICE,可以预测电源在不同负载条件下的性能。 总结: 反激式开关电源设计是一个涉及多方面因素的复杂过程,包括功率需求、开关频率、变压器设计、电容和电感的选择,以及保护和效率优化。正确理解并执行这些计算和分析,是构建高效、可靠电源的关键。在实践中,设计师通常会结合理论计算和实际测试,以确保设计满足预期的性能标准。
2025-04-02 19:14:09 652KB 反激式开关电源 计算分析
1
反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。
2025-04-02 14:48:00 185KB 开关|稳压
1
在探讨反激变换器中元器件的选型时,需要关注的几个关键知识点包括高频变压器的设计指标、MOS管和次级整流管的选择、变压器匝比的确定、初级电感的计算、变压器匝数的确定以及绕组线径的计算。 1. 高频变压器的设计指标 高频变压器的设计指标直接关系到整个反激变换器的性能表现。额定功率为37.2W,这决定了变压器需要承受的最大功率负载。工作频率为50-60kHz,意味着变压器必须能在该频率下正常工作,同时减少频率相关的损耗。输入电压范围为90Vac至264Vac,提出了对变压器宽输入电压适应性的要求。输出特性为+9.3V/±3%,4.0A,Vpp<120mV,这不仅包括了输出电压和电流的大小,也限定了输出电压的纹波范围。转换效率η≥86%确保了变换器的能效比。异常保护要求包括Surge(浪涌保护)、OCP(过电流保护)、OVP(过电压保护)、SCP(短路保护)和OLP(过载保护),确保在异常情况下变换器能够安全停止工作。 2. 面积乘积(AP)法 在高频变压器设计中,AP法是一种常用的设计方法,用于计算变压器铁芯的尺寸。根据AP法的公式,我们可以通过额定功率、窗口面积、磁芯截面积、窗口使用系数(Ku)、波形系数(Kf)及磁通密度来计算出AP值,从而选定合适的铁芯型号。例如,设计中所使用的铁芯型号为RM10,其Ae值为98mm²,满足设计的AP值要求。 3. 预估MOS管和次级整流管的应力 在确定变压器匝比范围时,需要预估MOS管和次级整流管的应力。对于MOS管,由于输入电压高达264V,故需选择额定电压至少为600V的MOS管。而对于次级整流管,输出电压为9.3V,一般选择60V以上的整流管。根据这些参数,可以计算得到变压器的匝比范围。 4. 变压器匝比的确定 变压器的匝比与占空比(Dmax)紧密相关。根据最大占空比来计算初次级的匝比,从而确定变压器的匝比范围。在设计中,根据反激变换器的工作特性和选定的PWM控制器工作频率,计算出合理的匝比。 5. 初级电感的计算 初级电感的计算对于反激变换器的稳定运行至关重要。初级电感Lp与变换器的占空比、输入电压、输出功率、频率以及纹波因子相关。设计中根据特定的输入电压和频率,以及相应的纹波因子,计算出所需的初级电感值。 6. 确定变压器的初级匝数Np和次级匝数Ns 根据电磁感应定律,可以计算出变压器的初级匝数和次级匝数。通过输入输出的电压转换关系,以及预先确定的匝比,可以确定出初级和次级的匝数。 7. 绕组线径的计算 绕组线径的计算需要根据电流的有效值来确定。初级和次级的有效值电流分别决定了初级和次级绕组的线径。根据不同的工作模式(CCM模式和DCM模式)下的电流计算,确定合理的线径。 8. 磁学定律 在高频变压器的设计中,需要运用到安培环路定律和电磁感应定律。安培环路定律解释电生磁的现象,而电磁感应定律则描述了磁生电的过程。这些定律在变压器设计中具有基础性意义。 反激变换器中元器件的选型是一个包含多项计算和评估的过程,需要综合考虑变换器的性能指标、工作环境和安全要求,以确保变换器能够高效、稳定和安全地运行。
2025-04-02 10:42:32 114KB 开关电源
1
《Buck双闭环仿真在开关电源中的应用》 在电力电子技术领域,开关电源因其高效、小型化等优点被广泛应用。而Buck变换器作为开关电源的一种基本拓扑结构,其工作原理是通过控制开关器件的导通和关断来调整输出电压。本文将深入探讨Buck双闭环仿真的概念及其在开关电源设计中的重要性。 Buck双闭环仿真,是指在Buck变换器控制系统中,采用两个独立的控制环路进行设计,通常包括电流环和电压环。电流环主要负责稳定流过负载的电流,而电压环则确保输出电压的稳定。这种双闭环设计能够提高系统的动态性能,使电源对负载变化和输入电压波动的响应更迅速、更准确。 MATLAB作为一种强大的数学计算和仿真工具,为Buck双闭环仿真实现提供了便利。在“buckshuangbihuan.mdl”文件中,我们可以看到一个完整的Buck变换器双闭环控制系统的模型。该模型包含了电路的电气元件,如电感、电容、开关器件以及控制电路的模拟部分,如误差放大器、PI控制器等。 电流环是内环,它的作用是快速响应负载的变化,使得流经电感的电流保持恒定。通常,电流环采用比例积分(PI)控制器,通过调整开关器件的占空比来控制电流。PI控制器可以有效地消除稳态误差,并提高系统的响应速度。 电压环作为外环,主要目标是维持输出电压的稳定。它监测输出电压并与设定值进行比较,然后通过误差放大器传递到电流环,间接调整开关器件的占空比。电压环的设计需要考虑系统的稳定性和瞬态响应,因此通常也需要PI控制器或者更复杂的控制器结构。 在MATLAB环境下,用户可以通过仿真模型对Buck变换器的动态特性进行分析,包括环路增益、相位裕度、带宽等关键参数。通过对这些参数的调整,可以优化控制系统的性能,使其满足实际应用的需求,如快速响应、低纹波、高效率等。 此外,仿真结果还可以帮助工程师评估系统在各种条件下的稳定性,如电源电压变化、负载变动等。通过改变仿真条件,可以预测和解决可能出现的问题,为硬件设计提供参考。 Buck双闭环仿真在开关电源设计中扮演着至关重要的角色。借助MATLAB等工具进行仿真,不仅可以验证理论设计的正确性,还能为实际电路的优化提供依据,从而实现更高效、更可靠的电源系统。通过深入理解并掌握这一技术,对于提升电源设计水平具有重要意义。
2025-04-01 12:41:04 11KB 开关电源
1