基于51单片机的数字频率计设计 由STC89C52单片机+信号输入+74HC14整形电路+74HC390分频电路+LCD1602显示模块+电源构成。 1、能测出正弦波、三角波或方波等波形的频率; 2、频率的测量范围为1Hz—12MHz,且能检测幅度最小值为1Vpp的信号; 3、通过LCD1602液晶显示屏显示检测到的即时频率数值(最多8位数,单位为Hz)。 后续的设计功能则需要自行添加补充。
2024-12-23 19:36:00 101.54MB 51单片机
1
本文件用于iOS object-c生成辣鸡代码,使用Python编写的工具。可以根据自己想要的内容进行修改。
2024-12-23 14:54:42 3KB Python编写 object-C代码
1
Python 爬虫数据可视化分析大作业 1. 项目概述 本项目旨在使用Python爬虫技术从互联网获取数据,并对这些数据进行可视化分析。整个项目将分为以下几个步骤:数据获取、数据清洗、数据分析和数据可视化。最终,我们将生成一个详细的文档,展示整个过程和分析结果。 2. 数据获取 我们将使用Python的requests库和BeautifulSoup库来爬取数据。目标网站为某电商平台,我们将获取商品的价格、评价数量和评分等信息。
2024-12-22 18:39:29 2.72MB python 爬虫
1
【1】该资源属于项目论文,非项目源码,如需项目源码,请私信沟通,不Free。 【2】论文内容饱满,可读性强,逻辑紧密,用语专业严谨,适合对该领域的初学者、工程师、在校师生等下载使用。 【3】文章适合学习借鉴,为您的项目开发或写作提供专业知识介绍及思路,不推荐完全照抄。 【4】毕业设计、课程设计可参考借鉴! 重点:鼓励大家下载后仔细研读学习,多看、多思考! ### 基于Java+Web的智慧农业信息采集系统的设计与实现 #### 一、引言 随着信息技术的快速发展,特别是在互联网技术领域的突破性进展,智慧农业作为一种新兴的农业生产模式正逐渐成为农业发展的新趋势。智慧农业通过集成现代信息技术与传统农业生产方式,实现了对农业生产过程的精准管理和智能化控制。本文旨在探讨一种基于Java Web技术的智慧农业信息采集系统的设计与实现,以期提高农业生产的效率和质量。 #### 二、智慧农业背景与意义 中国作为一个农业大国,其农业生产面临着诸多挑战,例如地域分布广泛、气候条件复杂多样以及农作物种类繁多等。这些因素导致了农业信息收集的难度增加,难以实现对农作物生长状态的实时监控和管理。此外,由于农村地区交通不便、网络基础设施落后等问题,农业信息的传输也存在较大障碍。因此,构建一套高效的信息采集系统对于提升农业生产力具有重要意义。 #### 三、Java Web技术概述 Java Web是一种基于Java平台的Web应用开发技术。它利用Java语言的强大功能和灵活性,结合HTML、CSS、JavaScript等前端技术,可以开发出稳定、安全、可扩展性强的Web应用程序。Java Web技术的核心包括Servlet、JSP、Spring框架等,其中Spring框架因其强大的企业级应用支持而受到广泛欢迎。 #### 四、系统设计目标 本系统的设计目标主要围绕以下几个方面展开: 1. **数据采集**:实现对农田环境参数(如温度、湿度、光照强度等)的实时监测与数据采集。 2. **数据分析处理**:通过算法对采集的数据进行分析处理,提取有价值的信息。 3. **决策支持**:根据分析结果为农户提供科学的种植建议,帮助他们优化种植策略。 4. **远程监控**:支持通过移动设备或计算机远程查看农田状况,便于农户随时了解作物生长情况。 5. **用户友好界面**:设计简洁易用的操作界面,方便不同年龄层次的农户操作。 #### 五、系统架构设计 ##### 1. **前端展示层** 前端展示层主要负责向用户提供友好的操作界面,采用HTML、CSS和JavaScript等技术实现,确保用户能够轻松地浏览和操作系统。 ##### 2. **业务逻辑层** 业务逻辑层是系统的中枢,负责处理各种业务请求,如数据处理、分析等。这一层通常采用Spring框架进行开发,利用其丰富的特性来简化开发流程。 ##### 3. **数据访问层** 数据访问层主要负责与数据库的交互,实现数据的存储与检索。可以采用MyBatis等持久化框架来简化数据库操作。 #### 六、关键技术实现 - **数据采集模块**:通过物联网传感器设备实时采集农田环境数据。 - **数据分析处理模块**:运用大数据技术和机器学习算法对采集的数据进行深度分析。 - **决策支持模块**:基于数据分析结果,利用专家系统或智能算法为农户提供种植建议。 - **远程监控模块**:利用Web技术和移动通信技术实现远程监控功能。 - **用户界面设计**:采用响应式设计方法,确保不同设备上都能获得良好的用户体验。 #### 七、结论 基于Java Web的智慧农业信息采集系统不仅能够有效解决农业信息采集难的问题,还能通过数据分析为农户提供决策支持,极大地提高了农业生产的效率和质量。未来,随着物联网、人工智能等技术的不断发展和完善,智慧农业将会发挥更大的作用,推动农业现代化进程的加速发展。 基于Java Web技术的智慧农业信息采集系统具有重要的现实意义和广阔的应用前景,值得进一步研究和推广。
2024-12-22 16:43:26 1.72MB 毕设论文 课程论文 学习资源 课程设计
1
读书笔记:本科毕设基于微服务的生产过程中质量品控系统的设计与实现后端
2024-12-21 19:55:09 38.64MB
1
在本文中,我们将深入探讨"Python机器学习案例"这一主题,包括Logistic回归、K-均值聚类和随机森林等重要算法的应用。这些技术在数据科学领域具有广泛的应用,帮助我们从数据中发现模式、预测未来趋势以及进行决策。 让我们来看看Logistic回归。Logistic回归是一种分类算法,尽管它的名字中含有“回归”,但它主要用于解决二分类问题。在Python中,我们可以使用`sklearn`库中的`LogisticRegression`模型。这个模型基于Sigmoid函数,将连续的线性预测转换为概率输出。在案例中,你可能会看到如何准备数据、训练模型以及评估其性能,如计算准确率、查准率、查全率和AUC-ROC曲线。 接下来是K-均值聚类(K-Means)。这是一种非监督学习方法,用于发现数据集中的自然分组或类别。K-Means通过迭代找到最佳的类别中心,使得每个样本到最近类别中心的距离最小。在Python中,可以使用`sklearn.cluster.KMeans`实现。在案例中,你可能遇到如何选择合适的K值、可视化聚类结果以及理解不同聚类对业务的意义。 我们要讨论的是随机森林(Random Forest)。随机森林是一种集成学习方法,它结合了多个决策树的预测来提高模型的稳定性和准确性。随机森林在处理分类和回归问题时都表现出色。在Python中,`sklearn.ensemble.RandomForestClassifier`和`sklearn.ensemble.RandomForestRegressor`是实现随机森林的常用工具。案例中可能会展示如何调整随机森林的参数,比如树的数量、特征的随机选择比例,以及如何通过特征重要性来理解模型。 在学习这些案例时,你不仅会接触到基本的模型使用,还会了解到数据预处理的重要性,如缺失值处理、特征缩放、编码类别变量等。此外,交叉验证、网格搜索和调参也是机器学习实践中不可或缺的部分。Python中的`sklearn.model_selection`模块提供了这些功能,帮助优化模型性能。 "Python机器学习案例"涵盖了从基础的分类到聚类再到集成学习的关键概念,通过实践加深对这些算法的理解。通过深入研究这些案例,你将能够更好地应用机器学习技术解决实际问题,并为你的数据分析技能添砖加瓦。在学习过程中,记得不断思考如何将理论知识与实际项目相结合,以提升你的机器学习能力。
2024-12-21 19:43:32 6.97MB 机器学习
1
基于matlab simulink的直流无刷电机的仿真
2024-12-19 18:22:40 41KB simulink matlab
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
积分管理系统java源码 一、项目体系结构设计 1. 系统架构 业务数据库:采用MongoDB作为数据库 离线推荐部分 离线统计部分:采用 Spark Core + Spark SQL 实现对数据的统计处理 离线统计部分:采用 Spark Core + Spark MLlib 利用 ALS算法实现电影推荐 2. 项目数据流程 1. 系统初始化部分 通过 Spark SQL 将系统初始化数据加载到 MongoDB 中。 2. 离线推荐部分 离线统计:从MongoDB 中加载数据,将电影平均评分统计、电影评分个数统计、最近电影评分个数统计三个统计算法进行运行实现,并将计算结果回写到 MongoDB 中; 离线推荐:从MongoDB 中加载数据,通过 ALS 算法分别将【用 户推荐结果矩阵】、【影片相似度矩阵】回写到MongoDB 中; 3. 数据模型 Movie:电影数据表 Rating:用户评分表 User:用户表 二、基本环境搭建 项目主体用 Scala 编写,采用 IDEA 2020.1 作为开发环境进行项目编写,采用 maven 作为项目构建和管理工具。 1. 新建项目结构 新建普
2024-12-18 17:20:24 3.5MB 系统开源
1
1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1