本文介绍、设计和分析了基于 FR-4 环氧基板材料的 2×2 圆形微带贴片天线阵列,基板厚度为 1.6 mm。 建议天线阵列的设计,我们使用的是FR4 Epoxy 介电基板材料。 名称“FR”代表阻燃剂,类型 4 表示玻璃纤维增​​强环氧树脂。 使用探针馈电技术设计建议的天线阵列。 2 x 2 CMSSPA 阵列专为 2.4 GHz 工作或谐振频率而设计,此 2.4 GHz 频率适用于 WLAN 应用。 为了设计工作在 2.4 GHz 频率范围的微带 2 x 2 圆形贴片天线,即使有各种仿真软件可用,例如 FEKO、IE3D、CST、HFSS 等。 使用高频结构模拟器 (HFSS) 软件设计和模拟 2 x 2 CMSPA。 本文的谐振或工作频率为 2.4 GHz,用于无线通信,提供 S 参数(回波损耗)、VSWR 值、带宽和 rETotal、总增益和方向的辐射图以及 rETotal、总增益和方向的 3D 极坐标图全部的。
2022-04-05 21:29:50 1.06MB Micro-strip Patch Antenna
1
Principles of Planar Near-Field Antenna Measurements 介绍天线近场测量的基础知识 Contents Preface xi 1 Introduction 1 1.1 The phenomena of antenna coupling 1 1.2 Characterisation via the measurement process 4 1.2.1 Free space radiation pattern 6 1.2.2 Polarisation 7 1.2.3 Bandwidth 8 1.3 The organisation of the book 11 1.4 References 12 2 Maxwell’s equations and electromagnetic wave propagation 13 2.1 Electric charge 13 2.2 The EM field 14 2.3 Accelerated charges 16 2.4 Maxwell’s equations 18 2.5 The electric and magnetic potentials 24 2.5.1 Static potentials 24 2.5.2 Retarded potentials 24 2.6 The inapplicability of source excitation as a measurement methodology 28 2.7 Field equivalence principle 28 2.8 Characterising vector EM fields 30 2.9 Summary 33 2.10 References 33 3 Introduction to near-field antenna measurements 35 3.1 Introduction 35 3.2 Antenna measurements 35 3.3 Forms of near-field antenna measurements 40 3.4 Plane rectilinear near-field antenna measurements 43 3.5 Chambers, screening and absorber 44 3.6 RF subsystem 47 3.7 Robotics positioner subsystem 52 3.8 Near-field probe 56 3.9 Generic antenna measurement process 58 3.10 Summary 60 3.11 References 60 4 Plane wave spectrum representation of electromagnetic waves 63 4.1 Introduction 63 4.2 Overview of the derivation of the PWS 64 4.3 Solution of the scalar Helmholtz equation in Cartesian coordinates 65 4.3.1 Introduction to integral transforms 65 4.3.2 Fourier transform solution of the scalar Helmholtz equation 65 4.4 On the choice of boundary conditions 78 4.5 Operator substitution (derivative of a Fourier transform) 79 4.6 Solution of the vector Helmholtz equation in Cartesian coordinates 81 4.7 Solution of the vector magnetic wave equation in Cartesian coordinates 83 4.8 The relationship between electric and magnetic spectral components 84 4.9 The free-space propagation vector k 87 4.10 Plane wave impedance 88 4.11 Interpretation as an angular spectrum of plane waves 90 4.12 Far-field antenna radiation patterns: approximated by the angular spectrum 92 4.13 Stationary phase evaluation of a double integral 95 4.14 Coordinate free form of the near-field to angular spectrum transform 101 4.15 Reduction of the coordinate free form of the near-field to far-field transform to Huygens’ principle 104 4.16 Far-fields from non-planar apertures 106 4.17 Microwave holographic metrology (plane-to-plane transform) 107 4.18 Far-field to near-field transform 108 4.19 Radiated power and the angular spectrum 112 4.20 Summary of conventional near-field to far-field transform 115 4.21 References 117 5 Measurements – practicalities of planar near-field antenna measurements 119 5.1 Introduction 119 5.2 Sampling (interpolation theory) 120 5.3 Truncation, spectral leakage and finite area scan errors 121 5.4 Antenna-to-antenna coupling (transmission) formula 125 5.4.1 Attenuation of evanescent plane wave mode coefficients 136 5.4.2 Simple scattering model of a near-field probe during a planar measurement 137 5.5 Evaluation of the conventional near-field to far-field transform 138 5.5.1 Standard techniques for the evaluation of a double Fourier integral 139 5.6 General antenna coupling formula: arbitrarily orientated antennas 143 5.7 Plane-polar and plane-bipolar near-field to far-field transform 148 5.7.1 Boundary values known in plane-polar coordinates 150 5.7.2 Boundary values known in plane-bipolar coordinates 151 5.8 Regular azimuth over elevation and elevation over azimuth coordinate systems 156 5.9 Polarisation basis and antenna measurements 159 5.9.1 Cartesian polarisation basis – Ludwig I 159 5.9.2 Polar spherical polarisation basis 160 5.9.3 Azimuth over elevation basis – Ludwig II 161 5.9.4 Copolar and cross-polar polarisation basis – Ludwig III 163 5.9.5 Circular polarisation basis – RHCP and LHCP 165 5.10 Overview of antenna alignment corrections 169 5.10.1 Scalar rotation of far-field antenna patterns 169 5.10.2 Vector rotation of far-field antenna patterns 171 5.10.4 Rotation of copolar polarisation basis – generalized Ludwig III 173 5.10.5 Generalized compound vector rotation of far-field antenna patterns 174 5.11 Brief description of near-field coordinate systems 175 5.11.1 Range fixed system 176 5.11.2 Antenna mechanical system 177 5.11.3 Antenna electrical system 178 5.11.4 Far-field azimuth and elevation coordinates 178 5.11.5 Ludwig III copolar and cross-polar definition 178 5.11.6 Probe alignment definition (SPP) 178 5.11.7 General vector rotation of antenna radiation patterns 179 5.12 Directivity and gain 180 5.12.1 Directivity 180 5.12.2 Gain – by substitution method 181 5.12.3 Gain-transfer (gain-comparison) method 182 5.13 Calculating the peak of a pattern 183 5.13.1 Peak by polynomial fit 183 5.13.2 Peak by centroid 185 5.14 Summary 186 5.15 References 187 6Pr obe pattern characterisation 189 6.1 Introduction 189 6.2 Effect of the probe pattern on far-field data 189 6.3 Desirable characteristics of a near-field probe 191 6.4 Acquisition of quasi far-field probe pattern 193 6.4.1 Sampling scheme 194 6.4.2 Electronic system drift (tie-scan correction) 197 6.4.3 Channel-balance correction 198 6.4.4 Assessment of chamber multiple reflections 200 6.4.5 Correction for rotary errors 202 6.4.6 Re-tabulation of probe vector pattern function 205 6.4.7 Alternate interpolation formula 209 6.4.8 True far-field probe pattern 211 6.5 Finite element model of open-ended rectangular waveguide probe 213 6.6 Probe displacement correction 217 6.7 Channel-balance correction 217 6.8 References 218 7 Computational electromagnetic model of a planar near-field measurement process 219 7.1 Introduction 219 7.2 Method of sub-apertures 220 7.3 Aperture set in an infinite perfectly conducting ground plane 223 7.3.1 Plane wave spectrum antenna–antenna coupling formula 225 7.4 Vector Huygens’ method 227 7.5 Kirchhoff–Huygens’ method 229 7.6 Generalized technique for the simulation of near-field antenna measurements 233 7.6.1 Mutual coupling and the reaction theorem 234 7.7 Near-field measurement simulation 237 7.8 Reaction theorem 239 7.8.1 Lorentz reciprocity theorem (field reciprocity theorem) 240 7.8.2 Generalized reaction theorem 244 7.8.3 Mutual impedance and the reaction theorem 247 7.9 Summary 247 7.10 References 248 8 Antenna measurement analysis and assessment 249 8.1 Introduction 249 8.2 The establishment of the measure from the measurement results 249 8.2.1 Measurement errors 250 8.2.2 The sources of measurement ambiguity and error 253 8.2.3 The examination of measurement result data to establish the measure 256 8.3 Measurement error budgets 259 8.3.1 Applicability of modelling error sources 259 8.3.2 The empirical approach to error budgets 260 8.4 Quantitative measures of correspondence between data sets 261 8.4.1 The requirement for measures of correspondence 261 8.5 Comparison techniques 263 8.5.1 Examples of conventional data set comparison techniques 263 8.5.2 Novel data comparison techniques 267 8.6 Summary 282 8.7 References 283 9 Advanced planar near-field antenna measurements 285 9.1 Introduction 285 9.2 Active alignment correction 285 9.2.1 Acquisition of alignment data in a planar near-field facility 287 9.2.2 Acquisition of mechanical alignment data in a planar near-field facility 289 9.2.3 Example of the application of active alignment correction 291 9.3 Amplitude only planar near-field measurements 296 9.3.1 PTP phase retrieval algorithm 297 9.3.2 PTP phase retrieval algorithm – with aperture constraint 301 9.4 Efficient position correction algorithms, in-plane and z−plane corrections 303 9.4.1 Taylor series expansion 305 9.4.2 K-correction method 311 9.5 Partial scan techniques 315 9.5.1 Auxiliary translation 315 9.5.2 Rotations of the AUT about the z-axis 319 9.5.3 Auxiliary rotation – bi-planar near-field antenna measurements 320 9.5.4 Near-field to far-field transformation of probe corrected data 329 9.5.5 Applicability of the poly-planar technique 335 9.5.6 Complete poly-planar rotational technique 338 9.6 Concluding remarks 342 9.7 References 344 Appendix A: Other theories of interaction 347 A.1 Examples of postulated mechanisms of interaction 347 Appendix B: Measurement definitions as used in the text 354 Appendix C: An overview of coordinate systems 357 C.1 Antenna mechanical system (AMS) 357 C.2 Antenna electrical system (AES) 357 C.3 Far-field plotting systems 358 C.4 Direction cosine 358 C.5 Azimuth over elevation 360 C.6 Elevation over azimuth 361 C.7 Polar spherical 362 C.8 Azimuth and elevation (true-view) 364 C.9 Range of spherical angles 365 C.10 Transformation between coordinate systems 366 C.11 Coordinate systems and elemental solid angles 367 C.12 Relationship between coordinate systems 368 C.13 Azimuth, elevation and Roll angles 371 C.14 Euler angles 373 C.15 Quaternion 374 C.16 Elemental solid angle for a true-view coordinate system 377 Appendix D: Trapezoidal discrete Fourier transform 380 Appendix E: Calculating the semi-major axis, semi-minor axis and tilt angle of a rotated ellipse 384 Index 389
2022-03-25 05:09:19 5.22MB Antenna Near-Field Measurement
1
Robert S. Elliott版天线理论与设计 适合初学天线的人
2022-03-24 14:15:18 16.06MB Antenna Theory
1
天线理论与设计,天线中间的经典教程,适合广大天线爱好者学习和探讨。
2022-03-23 17:56:03 21.64MB 天线教程
1
The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. Like the previous editions, Antenna Theory, Third Edition is designed to meet the needs of electrical engineering and physics students at the senior undergraduate and beginning graduate levels, and those of practicing engineers as well. The text assumes that the readers have a knowledge of basic undergraduate electromagnetic theory, including Maxwell's equations and the wave equation, introductory physics, and differential and integral calculus. The Third Edition offers new material that includes: A chapter on smart antennas, which is presently a hot topic of current interest to antenna engineers in a number of application areas, especially wireless communication A fractal antenna section, which introduces a new class of antennas that has received a lot of interest and attention after the second edition was published New end-of-chapter tables that provide a summary of important equations in each of the respective chapters Additional new figures, photos, and tables to better illustrate concepts Additional end-of-the-chapter problems An important new feature is the multimedia material on the accompanying CD, which presents: PowerPoint view graphs of lecture notes End-of-the-chapter interactive questions for revie Animations and applets for most of the chapters based on Java Second-edition FORTRAN computer programs translated to MATLAB® Additional new computer programs based on MATLAB® with applications to topics in the various chapters
2022-03-22 20:52:00 19.1MB Antenna design
1
Phased Array Antenna 相控阵天线手册 相控阵的经典书籍
2022-03-21 10:07:36 7.5MB Phased Array Antenna
1
HFSS Antenna Design Kit的使用介绍和应用实例讲解
2022-03-16 21:21:11 719KB HFSS Antenna Design Kit
1
MATLAB模拟的电磁学时域有限差分算法课本中的一个代码,主要是用FDTD仿真矩形微带贴片天线,最终获得S11
2022-03-06 22:26:54 56KB MATLAB模拟 矩形微带天线 代码
1
MIMO天线的CST仿真实例教程,熟悉CST的操作流程,以及仿真结果的获取,
2022-03-03 16:08:02 819KB CST MIMO
1
结合多家半导体原厂天线设计资料,和小型化天线设计图。 AN043(swra117d).pdf CC_Antenna_DK REF DESIGN.zip ANT 库.zip DN007(swru120b).pdf Antenna Quick Guide(swra351a).pdf DN043(swra421).pdf Antenna Selection Guide(swra161b).pdf 天线选择指南(zhca070).pdf Antenna Selection Quick Guide.pdf
2022-03-03 11:57:46 14.71MB 天线 NORDIC TI
1