pytorch-faster-rcnn 1.简介 基于Pytorch的快速rcnn框架的实现。有关更快的R-CNN的详细信息,请参阅论文《 ,作者邵少青,何开明,Ross Girshick,孙健 此检测框架具有以下功能: 它可以作为纯python代码运行,也可以基于pytorch框架纯运行,无需构建 仅运行train.py脚本即可轻松进行培训,只需设置数据根目录 它有许多骨干网。 像vgg,resnet-fpn,mobilenet,高分辨率网络(HRNet) 它可以是一个真正的检测框架。 您只需要在配置文件中更改超级参数,并获得不同的模型来比较不同的模型 它的内存效率高(vgg16约为3GB) 2.安装 2.1先决条件 Python 2.7或3.5 火炬1.5.1 火炬视觉0.6.1 numpy的1.15.4 枕头6.1.0 pycocotools 2.0 matplotl
2021-10-28 21:22:29 297KB detection pytorch faster-rcnn Python
1
OSSEC是基于主机的入侵防护开源解决方案,本手册通过虚拟的业务场景描述OSSEC的主要功能、特性以及日常管理运维的方法。
2021-10-28 21:13:30 8.58MB HIDS,IDS
1
是世界上第一个用于自动驾驶汽车的“多合一”开源软件。 Autoware的功能主要适合于城市,但也可以涵盖高速公路,高速公路,中山地区和地理围栏地区。 Autoware的代码库受Apache 2许可证保护。 请自行决定使用它。 为了安全使用,我们为不拥有真正的自动驾驶汽车的人提供了基于ROSBAG的仿真环境。 如果您打算将Autoware与真正的自动驾驶汽车一起使用,请在进行现场测试之前制定安全措施和风险评估。 您可以参考用户指南和开发人员指南。 什么是汽配 Autoware提供了一组丰富的自动驾驶模块,这些模块由传感,计算和驱动功能组成。 介绍了这些功能的概述。 关键字包括本地化,映射,对象检测与跟踪,交通信号识别,任务与运动计划,轨迹生成,车道检测与选择,车辆控制,传感器融合,摄像头,LiDAR,RADAR,深度学习,基于规则的系统,连接导航,日志记录,虚拟现实等。 免费手册也可以
2021-10-28 12:29:42 8.64MB planner detection ros calibration
1
行人侦查跟踪 使用Mobilenet SSD进行行人检测和跟踪 行人检测 使用Caffe Mobilenet SSD进行了培训,详细信息( ) 然后将模型转移到 (针对移动平台进行了优化的深度学习框架) 追踪 基于光流和卡尔曼滤波器的多对象跟踪器,更多详细信息: : 用法 编译ncnn 转到3rd_party / ncnn (与Raspberry Pi等ARM平台一起使用时,修改ncnn / CMakeLists.txt:添加add_definitions(-mfpu=neon) ,修改ncnn / src / CMakeLists.txt:将40to46行修改为if(TRUE) ) mkdir build cd build cmake .. make 其余全部编译在根目录中mkdir build cd build cmake .. make 跑步去建立/ ./main
2021-10-27 23:16:51 34.47MB C++
1
GIthub使用指北: 1.想将项目拷贝到自己帐号下就fork一下. 2.持续关注项目更新就star一下 3.watch是设置接收邮件提醒的. Retinanet-Pytorch 目标检测算法pytorch实现, 本项目不是完全的复现论文(很多参数以及实现方式上与原论文存在部分差异,有疑问欢迎issues) 由于一些原因,训练已经过测试,但是并没有训练完毕,所以不会上传预训练模型. 但项目代码验证无误.(但在使用时需要自己进行调整。不建议新手进行尝试。) 项目在架构上与 采用了相似的结构. 重用了大量中代码,如训练器,测试器等. 本项目单机多卡,通过torch.nn.DataParallel实现,将单机环境统一包装.支持单机单卡,单机多卡,指定gpu训练及测试,但不支持多机多卡和cpu训练和测试. 不限定检测时的设备(cpu,gpu均可). Requirements pytorch op
2021-10-27 19:52:27 85KB pytorch object-detection retinanet Python
1
交通信号灯的检测和分类模型 训练 为了开始训练,您可以启动bash脚本或直接使用trainer.py 模型 用于训练的模型是来自Torchvision的Faster RCNN模型。 该模型预测边界框,然后进行分类。 因此,该模型仅获得用于评估的图像。 该分数用于评估为mAP。 数据 我使用了来自数据。 借助脚本utils/create_balanced_dataset.py 。 我试图获得一个平衡的data_set,因为只有很少的图像带有包围交通灯的关闭框或黄色。 因此,我首先在每个图像上添加了这样的边界框,然后添加了剩余图像。 但是,每个交通信号灯类别最多出现1000次,因此类别之间的平衡是稳定的,而不会增加用于训练过程的图像。 可能的调整 对于前兆的有意义的置信度度量或通常包括不同的预测分数。 我只使用了pytorch模型中的默认掠夺分数,以便评估模型的性能 添加用于注释图像的脚本,以
2021-10-27 09:19:46 10KB Python
1
面具识别 实时口罩磨损检测模型 使用Mobilenet V2 CNN模型预测是否戴口罩。 人脸检测使用Caffe2框架 描述 导入模块 带有python3的OpenCV keras,plaidml-keras(用于AMD GPU计算) 麻木 matplotlib argparse 张量流2.2.0 用法 火车 $ python train_mask_detector.py --dataset dataset 图像 $ python detection.py --image [Path to Image] 视频 更改detection.py中的视频路径后使用 $ python detection_video.py
2021-10-27 08:53:26 70.37MB Python
1
在TorchServe上运行的Yolov5(与GPU兼容)! 这是一个用于为Yolo v5对象检测模型运行TorchServe的dockerfile。 (TorchServe(PyTorch库)是一种灵活且易于使用的工具,用于服务从PyTorch导出的深度学习模型)。 您只需要在ressources文件夹中传递一个yolov5权重文件(.pt),它将部署一个http服务器,准备进行预测。 设置Docker映像 如果使用GPU,则在本地构建Torchserve映像(dockerhub一个错误): Build the image torchserve locally for GPU before running this (cf github torchserve) https://github.com/pytorch/serve/tree/master/docker 注意:仅对于CPU
2021-10-26 18:55:31 188KB docker service pytorch object-detection
1
matlab分时代码免责声明 提供了官方的Faster R-CNN代码(用MATLAB编写)。 如果您的目标是在NIPS 2015论文中复制结果,请使用。 该存储库包含对MATLAB代码的Python重新实现。 此Python实现基于的分支构建。 两种实现之间略有不同。 特别是此Python端口 在测试时速度要慢约10%,因为某些操作在CPU上的Python层中执行(例如220ms /图像,而VGG16为200ms /图像) 提供与MATLAB版本相似但不完全相同的mAP 由于实现上的细微差异,因此与使用MATLAB代码训练的模型不兼容 包括近似的联合训练,比交替优化(对于VGG16)快1.5倍-有关更多信息,请参阅这些 更快的R-CNN:通过区域提议网络实现实时目标检测 任少卿,何开明,罗斯·吉尔希克,孙健(Microsoft Research) 该Python实现包含在MSR实习期间编写的Sean Bell(Cornell)提供的内容。 请与官方联系以获取更多详细信息。 更快的R-CNN最初在an中进行了描述,随后在NIPS 2015中发布。 执照 Faster R-CNN是根据M
2021-10-26 16:00:41 61.23MB 系统开源
1
matlab人头检测的代码快速人体姿势估计CVPR2019 这个项目是的研究。 介绍 这是的官方pytorch实现。 在这项工作中,我们专注于两个问题 如何使用与模型无关的方法来减小模型大小和计算。 如何提高简化模型的性能。 在我们的论文中 我们通过减少网络的宽度和深度来减少模型的大小和计算量。 提出快速姿势精馏( FPD )以改善简化模型的性能。 MPII数据集上的结果证明了我们方法的有效性。 我们使用HRNet代码库重新实现了FPD,并在COCO数据集上提供了额外的评估。 我们的方法(FPD)可以在没有地面标签的情况下工作,并且可以利用未标记的图像。 对于MPII数据集 我们首先训练了一个教师模型(沙漏模型,堆栈= 8,num_features = 256,90.520 @ MPII PCKh@0.5)和一个学生模型(沙漏模型,堆栈= 4,num_features = 128,89.040 @ MPII PCKh@0.5)。 然后,我们使用教师模型的预测和真实标签来共同监督学生模型(沙漏模型,堆栈= 4,num_features = 128,87.934 @ MPII PCKh@0
2021-10-26 15:32:28 375KB 系统开源
1