自我监督视觉预训练的密集对比学习 该项目托管用于实现DenseCL算法以进行自我监督表示学习的代码。 王新龙,张如凤,沉春华,Kong涛,李磊在:Proc。 IEEE Con​​f。 2021年的计算机视觉和模式识别(CVPR) arXiv预印本( ) 强调 增强密集预测: DenseCL预训练模型在很大程度上有利于密集预测任务,包括对象检测和语义分段(最高+ 2%AP和+ 3%mIoU)。 简单的实现: DenseCL的核心部分可以用10行代码实现,因此易于使用和修改。 灵活的用法: DenseCL与数据预处理脱钩,因此可以快速灵活地进行培训,同时不知道使用哪种增强方法以及如何对图像进行采样。 高效的培训:与基准方法相比,我们的方法引入的计算开销可忽略不计(仅慢1%)。 更新 发布了DenseCL的代码和预训练模型。 (02/03/2021) 安装 请参考进行安装和数据集准备。
1
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
2022-10-13 15:20:26 13.26MB 深度学习
1
Rebiber:使用官方信息标准化bibtex的工具。 我们经常引用使用他们的arXiv的论文版本不提的是,他们在一些会议已经发布。 这些非正式的围兜条目可能会违反某些会议的提交规则或适用于摄像头的版本规则。 我们引入Rebiber ,这是Python中的一个简单工具,可以自动修复它们。 它基于来自或的官方会议信息(适用于NLP会议)! 您可以在查看支持的会议列表。 您可以用作简单的网络演示。 安装 pip install rebiber -U 要么 git clone https://github.com/yuchenlin/rebiber.git cd rebiber/ pip in
1
使用深度学习进行环境声音分类 自主机器人是人工智能的一个领域,致力于设计可以执行任务的机器人,而无需任何外部来源的干预。 自主机器人将对我们在家庭,工业和公共场所的生活产生巨大影响。 这些机器人需要了解周围环境以表现出智能行为。 机器人感知周围环境的方式之一就是通过声音。 近年来,机器人的机械控制技术以可观的速度增长。 但是,他们通过听觉场景感知周围环境的能力仍处于起步阶段。 声音场景分类以多种方式补充了基于图像的分类,例如与有限的摄像机视角相比,麦克风本质上是全向的,并且音频信号需要较少的计算资源和较低的带宽。 装有麦克风的机器人可以通过分析来自声源的声音信号来以任何角度聆听并与人类互动,并且可以增强行为和辅助自主机器人的应用领域。 许多研究人员正在研究智能声音识别(ISR)系统,以使机器人能够了解真实的周围环境。 环境声音分类系统的目标是分析人类的听觉意识特征并将这种感知能力嵌入自主机
2022-10-12 21:41:25 218.98MB JupyterNotebook
1
机器学习 05.Advice for applying machine learning 编程作业 jupyter note版本 机器学习与数据挖掘 machine learning
2022-10-12 18:05:16 1.7MB 机器学习 评估学习算法
1
本文设计了一个自我监督的注意模块,该模块可以识别感兴趣的显着区域,而无需明确的手工标记注释。在现有的以CNNs为特征提取器的深度RL方法中,可以直接即插即用。 注意模块学习的是前景注意掩码,而不是预定义的关键点数量。
2022-10-12 17:06:59 7.33MB 自注意力
1
OpenNMT-py:开源神经机器翻译 OpenNMT-py是项目的版本, 项目是一个开源(MIT)神经机器翻译框架。 它被设计为易于研究的,可以尝试翻译,摘要,形态和许多其他领域的新思想。 一些公司已经证明该代码可以投入生产。 我们喜欢捐款! 请查看带有标签的问题。 提出问题之前,请确保您已阅读要求和文档示例。 除非有错误,否则请使用或提出问题。 公告-OpenNMT-py 2.0 我们很高兴宣布即将发布OpenNMT-py v2.0。 此版本背后的主要思想是-几乎完整地改造了数据加载管道。 引入了新的“动态”范式,允许对数据进行动态转换。 这具有一些优点,其中包括: 删除或
1
Breast Ultrasound Image Classification Based on Multiple-Instance Learning
2022-10-11 17:15:18 165KB 研究论文
1
Understanding Machine Learning - From Theory to Algorithms这本书的中文扫描版
2022-10-11 13:18:21 47.86MB machine lear theory to
1
Machine learning is becoming important in every discipline. It is used in engineering for autonomous cars. It is used in finance for predicting the stock market. Medical professionals use it for diagnoses. While many excellent packages are available from commercial sources and open-source repositories, it is valuable to understand how these algorithms work. Writing your own algorithms is valuable both because it gives you insight into the commercial and open-source packages and also because it gives you the background to write your own custom Machine Learning software specialized for your application. MATLAB® had its origins for that very reason. Scientists who needed to do operations on matrices used numerical software written in FORTRAN. At the time, using computer languages required the user to go through the write-compile-link-execute process that was time consuming and error prone. MATLAB presented the user with a scripting language that allowed the user to solve many problems with a few lines of a script that executed instantaneously. MATLAB has built-in visualization tools that helped the user better understand the results. Writing MATLAB was a lot more productive and fun than writing FORTRAN. The goal of MATLAB Machine Learning is to help all users harness the power of MATLAB to do a wide range of learning problems. This book has two parts. The first part, Chapters 1–3, provides background on machine learning including learning control that is not often associated with machine intelligence. We coin the term “autonomous learning” to embrace all of these disciplines. The second part of the book, Chapters 4–12, shows complete MATLAB machine learning applications. Chapters 4–6 introduce the MATLAB features that make it easy to implement machine learning. The remaining chapters give examples. Each chapter provides the technical background for the topic and ideas on how you can implement the learning algorithm. Each example is implemented in a MATLAB script supported by a number of MATLAB functions. The book has something for everyone interested in machine learning. It also has material that will allow people with interest in other technology areas to see how machine learning, and MATLAB, can help them solve problems in their areas of expertise.
2022-10-11 13:01:20 20.46MB matlab
1