∗∗∗ 点击查看 :吴恩达机器学习 —— 整套笔记+编程作业详解 ∗∗∗\color{#f00}{***\ 点击查看\ :吴恩达机器学习 \ —— \ 整套笔记+编程作业详解\ ***}∗∗∗ 点击查看 :吴恩达机器学习 —— 整套笔记+编程作业详解 ∗∗∗ 作业及代码:https://pan.baidu.com/s/1L-Tbo3flzKplAof3fFdD1w 密码:oin0 本次作业的理论部分:吴恩达机器学习(七)支持向量机 编程环境:Jupyter Notebook 1. 线性 SVM 任务 观察惩罚项系数 C 对决策边界的影响,数据集:data/ex6data1.mat 在理论部分,
2022-05-09 00:28:51 385KB python 吴恩达 学习
1
TextRecommended TF-IDF SVM文本分类实现 实现了三个分词接口 IK Jeseg Stanford 还是觉得Jeseg最好,自定义的空间也大 特征选取是用CHI2 语料库是搜狗
2022-05-08 19:41:43 396KB Java
1
本资料包括实验要求文档,报告文档,训练及测试数据,matlab源代码。就给定问题,利用SVM来进行分类。SVM包括hardmargin的线性和非线性内核,softmargin的线性和非线性内核分别来分类以及评估分类准确度-a MATLAB (M-file) program to compute the discriminant functiong for the following SVMs, using the training set provided:A hard-margin SVM with the linear kernel, A hard-margin SVM with a polynomial kernel, A soft-margin SVM with a polynomial kernel as given above
2022-05-08 10:55:31 1.32MB SVM MATLAB hard&soft kernel
1
为了进一步提高网络异常检测的准确率, 本文在对现有入侵检测模型分析的基础上, 提出了一种基于卷积神经网络和支持向量机的网络报文入侵检测方法. 该方法首先将数据预处理成二维矩阵, 为了防止算法模型过拟合, 利用permutation函数将数据随机打乱, 然后利用卷积神经网络CNN从预处理后的数据中学习有效特征, 最后通过支持向量机SVM分类器将得到的向量进行分类处理. 在数据集选择上, 采用网络入侵检测常用的权威数据集—京都大学蜜罐系统数据集, 通过与GRU-Softmax、GRU-SVM等现有检测率较高的模型进行实验对比, 该模型在准确率上最高分别提高了19.39% 和12.83%, 进一步提升了网络异常检测的准确度. 同时, 本研究所提出方法在训练速度和测试速度上有较大提高.
1
支持向量机是一个非常出色的二分类分类模型,关于这个笔记为三篇,介绍SVM的原理。
2022-05-07 10:16:53 975KB SVM 支持向量机
1
支持向量机SVM,回归。
2022-05-07 10:04:05 890KB SV
1
时序预测 | MATLAB实现SVM(支持向量机)时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上
针对实际监控中人体目标轮廓的多尺度特性,提出一种用于人体目标检测的多尺度方向特征描述子(HOGG)。首先采用Gabor滤波器提取人体图像对应不同尺度、不同方向的多个Gabor幅值域图谱,然后将相同尺度不同方向的幅值域图谱融合以降低特征维数,并对每幅融合图像提取梯度方向直方图(HOG)特征,最后将这些HOG特征联合起来作为人体图像表征。利用支持向量机(SVM)对描述特征进行分类,在CAVIAR数据库中进行了实验,结果表明,该算法对人体目标检测具有较好的性能。
2022-05-06 21:26:50 145KB 人体检测
1
这个 svm 代码是为了分类两个不同的类而编写的。
2022-05-06 19:25:25 2KB matlab
1
1.标准化gamma空间和颜色空间 为了减少光照因素的影响,首先需要将整个图像进行规范化。在图像的纹理强度中,局部的表层曝光贡献的比重较大,所以,这种压缩处理能够有效地降低图像局部的阴影和光照变化。因为颜色信息作用不大,通常先转化为灰度图 Gamma压缩公式: 比如可以取Gamma=1/2
2022-05-06 19:25:11 2.32MB 图像特征 HOG
1