CNN_with_CAES_and_DQN 卷积神经网络的组合,其中卷积自动编码器(堆叠式)与深度 Q 网络相结合。 C++代码基于tiny_cnn
2022-06-29 21:18:19 728KB C++
1
Dependency Opencv Keras(theano-backend " tf data order") Numpy
2022-06-29 18:05:29 21.77MB 深度学习 计算机视觉 车牌识别 LBP
此函数可用于获取经过训练的 lstm 层的输出使用内置函数“lstmLayer”创建的用法: 输出 = getLSTM 输出(可变参数) output = getLSTMOutput('lstm_layer', lstm_layer, 'input', test_input); 输入: 'lstm_layer': 长短期记忆 (LSTM) 层使用函数 lstmLayer “输入”:要测试的输入(大小应与 lstm 层的大小相匹配输入 [检查:lstm_layer.InputSize] 输出: '输出':lstm层的输出 $ KK 10/20/2017 随意使用该功能用于任何目的:)- 另见“lstmLayer”“层”
2022-06-29 10:33:11 2KB matlab
1
这里面包含整个基于神经网络深度学习 ,实现人脸识别项目,包括原始数据 ,训练数据 训练模型 测试数据等,包含演示同步ppt文件, 使用的开发工具是pycharm,基于python3实现,该案例可做为本科毕设的入门参考,ppt内容包含整个讲解过程,从人脸识别到cnn,卷积,从欧式距离到人脸表情变化的计算详情 以及整个卷积的介绍,可以做为入门以及会议上介绍使用的文档。 参考文件 基于CNN卷积神经网络实现人脸识别-人脸表情识别-同步ppt介绍及基于python3实现识别源代码。
2022-06-27 14:09:30 64.04MB CNN python 卷积神经网络 人脸表情识别
python语言编写的卷积神经网络代码示例,可直接在tensorflow运行,不懂的可以留言交流。
2022-06-27 10:44:39 217.56MB CNN代码 卷积神经网络 python
1
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入,此外每次迭代训练过程中,输入特征也作为参数进行更新;其次,设计了一种具有三种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功地将分类正确率提升了5.04%。
1
captcha_cracker 简介 这是一个基于 编写的卷积神经网络模型,简单实现的验证码识别功能。 是一款 社区中流行的验证码生成库, 项目模型的训练集以及在线测试所用到的验证码均采用该库生成。 运行环境 Ubuntu16.04 python3.5.2 virtualenv Tensorflow Backend 实现原理 用 Captcha 生成2组每组2000个4位验证码图片(图片尺寸:36×120),并等分成4份(单张图片尺寸:36×30),将单个字符的图片分类保存在 images 目录中作为训练集(每组8000张图片)。 生成2组每组500个4位验证码图片(图片尺寸:36×120),并等分成4份(单张图片尺寸:36×30),将单个字符的图片分类保存在 images 目录中作为测试集(每组2000张图片)。 运行 pack_data.py 将图片转为 RGB 矩阵并用cPic
2022-06-24 11:08:30 5.23MB neural-network tensorflow cnn-keras Python
1
Match-LSTM和答案指针(Wang和Jiang,ICLR 2016) 此仓库尝试在同一张纸上重现2016年论文中的match-lstm和answer指针实验。 许多预处理锅炉代码来自Stanford CS224D。 代码的内容在qa_model.py中。 为了使代码正确,我不得不修改tensorflow的原始注意力机制实现。 给定一组段落,运行train.py训练模型,并运行qa_answer.py生成答案。 请通过与我联系以获取更多信息。 该代码还充当示例代码,展示了如何将tensorflow的注意力机制连接在一起。 截至2017年8月13日,此类示例在任何地方都不可用。 预处理
2022-06-22 17:06:17 8.66MB nlp deep-learning tensorflow question-answering
1
统一手势识别和指尖检测 同时用于手势识别和指尖检测的统一卷积神经网络(CNN)算法。 所提出的算法使用单个网络预测一次手指类别分类的概率和指尖位置输出以进行回归评估。 根据手指类别的概率,可以识别手势,并使用这两个信息对指尖进行定位。 我们没有直接从CNN的完全连接(FC)层中移出指尖位置,而是从完全卷积网络(FCN)中移出了指尖位置集合,然后采用集合平均来使最终的指尖位置输出回归。 更新 包括robust real-time hand detection using yolo进行的robust real-time hand detection using yolo在检测系统的第一阶段获得更好的平滑性能,并且大多数代码已经过清理和重组,以便于使用。 要获取以前的版本,请访问发布。 要求 TensorFlow-GPU == 1.15.0 凯拉斯== 2.2.4 ImgAug == 0.
2022-06-22 16:41:12 1.76MB solo cnn yolo gesture-recognition
1
用于mnist数据集识别,将minst数据集和算坏mnist数据集的结果进行对比。
2022-06-22 10:34:38 88KB 贝叶斯卷积神经网络
1