资源包包含一个pycharm工程,其中包含两个.py文件,展示了Intel公司的RealsenseD435i深度相机API的基本操作,结合PyQt制作了基本的窗体应用程序。 主要内容:D435i深度相机数据流的开启、RGB图和深度图的获取与对准、深度图的后处理、IMU数据的获取和相机姿态的绘制、相关的PyQt窗体界面的设计等等。 希望该资源能够帮助到大家!
2024-05-17 15:29:54 11KB Python D435i pyqt5 Realsense
1
可直接运行,traffic_simulation-master_python_跟驰_换道模型_交通流_idm_源码
2024-05-17 10:28:26 276KB python
1
1.Python实现ARIMA-LSTM时间序列预测(完整源码和数据) anaconda + pycharm + python +Tensorflow 注意事项:保姆级注释,几乎一行一注释,方便小白入门学习! 2.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 3.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4.作者介绍:某大厂资深算法工程师,从事Matlab、Python算法仿真工作8年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+
2024-05-16 21:05:37 48KB python lstm
c#多线程中用pythonnet库调用Python的方法解决死锁问题的源代码 参考csdn博客:https://blog.csdn.net/qiangpi6057/article/details/135076348
2024-05-16 15:32:20 60.95MB python pythonnet 死锁问题
1
python爱心代码高级
2024-05-15 23:36:41 2KB python
1
2024年3月电子学会Python等级考试试卷(一级)真题,包含答案
2024-05-15 12:35:14 605KB python 电子学会考级 电子学会
1
SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数SSA麻雀算法智能优化python程序,可自行设置寻优函数
2024-05-15 11:29:01 2KB python
1
毕业设计资料,计算机毕业设计,php毕业设计,php作业,php学习,php课程
2024-05-14 01:22:06 29.97MB 毕业设计 python 推荐算法
1
classification_BPNeuralNetwork 本文介绍了通过Python实现BP神经网络分类算法,对不同半径的圆进行多分类(3分类),特征即为圆的半径。 输入层12节点,一个6节点的隐藏层,输出层3个节点。 1.目标 通过BP算法实现对不同半径的圆的分类。 2.开发环境 IDE:PyCharm 2018.3.3(Community Edition) Python及相关库的版本号如下图所示: 3.准备数据 目的: 生成3类圆在第一象限内的坐标(圆心都是原点) 第1类:半径范围为110,分类标识为‘0’ 第2类:半径范围为1020,分类标识为‘1’ 第3类:半径范围为20~30,分类标识为‘2’ 代码如下:data_generate.py import numpy as np import math import random import csv # 只生成第一象限内的坐标即
2024-05-13 21:00:26 494KB 附件源码 文章源码
1
脑机接口(BCI)为大脑和外部设备之间提供了一个直接通信通道。基于稳态视觉诱发电位的脑机接口(SSVEPBCI)因其高信息传输率而受到越来越多的关注。任务相关成分分析法(TRCA)是一种最新的单独校准 SSVEPBCI 的方法。然而,在 TRCA 中,从每个刺激中学习到的空间滤波器可能是冗余的,时间信息没有得到充分利用。针对这一问题,本文提出了一种新方法,即任务判别成分分析法(TDCA),以进一步提高单独校准的 SSVEPBCI 的性能。通过两个公开的基准数据集对 TDCA 的性能进行了评估,结果表明 TDCA 的性能明显优于集合 TRCA 和其他竞争方法。测试 12 名受试者的离线和在线实验进一步验证了 TDCA 的有效性。本研究为设计经过视频校准的 SSVEPBCI 解码方法提供了新的视角,并为其在高速脑拼写应用中的实现提供了启示 ———————————————— 版权声明:本文为CSDN博主「紫钺-高山仰止」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_43158059/articl
2024-05-13 09:22:14 67KB python
1