经典的Java基础面试题集锦,包括问题与答案,适合学习与面试准备使用
2024-09-03 14:02:31 37KB java 求职面试
1
目标检测的概念、应用及问题 目标检测是计算机视觉领域的核心问题之一,其任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。目标检测是一个分类、回归问题的叠加,包含分类、定位、大小和形状等问题。目标检测的应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。 一、基本概念 1. 目标检测的定义:目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。 2. 目标检测的分类:计算机视觉中关于图像识别有四大类任务:分类、定位、检测和分割。目标检测是一个分类、回归问题的叠加。 3. 目标检测的核心问题:目标检测的核心问题包括分类问题、定位问题、大小问题和形状问题。 二、目标检测算法分类 基于深度学习的目标检测算法主要分为两类:Two Stage和One Stage。 1. Two Stage:先进行区域生成,然后通过卷积神经网络进行样本分类。任务流程:特征提取 --> 生成 RP --> 分类/定位回归。常见的Two Stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。 2. One Stage:直接在网络中提取特征来预测物体分类和位置。任务流程:特征提取–> 分类/定位回归。常见的One Stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。 三、目标检测应用 目标检测的应用非常广泛,包括: 1. 人脸检测:智能门控、员工考勤签到、智慧超市、人脸支付、车站、机场实名认证、公共安全等。 2. 行人检测:智能辅助驾驶、智能监控、暴恐检测、移动侦测、区域入侵检测、安全帽/安全带检测等。 3. 车辆检测:自动驾驶、违章查询、关键通道检测、广告检测等。 4. 遥感检测:大地遥感、农作物监控、军事检测等。 四、目标检测原理 目标检测分为两大系列——RCNN系列和YOLO系列,RCNN系列是基于区域检测的代表性算法,YOLO是基于区域提取的代表性算法。另外还有著名的SSD是基于前两个系列的改进。 目标检测原理包括候选区域产生、滑动窗口、选择性搜索等。 1. 候选区域产生:目标检测技术都会涉及候选框(bounding boxes)的生成,物体候选框获取当前主要使用图像分割与区域生长技术。 2. 滑动窗口:滑动窗口是一种常用的目标检测算法,通过滑窗法流程图可以很清晰理解其主要思路。 3. 选择性搜索:选择搜索是一种提高计算效率的方法,通过对图像中最有可能包含物体的区域进行搜索。 目标检测是计算机视觉领域的核心问题之一,其应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。理解目标检测的概念、应用及问题对研究和应用目标检测技术非常重要。
2024-08-24 13:32:11 1.87MB 目标检测
1
【优化布局】粒子群算法求解带出入点的车间布局优化问题是一个重要的工业工程与运筹学议题。在现代制造业中,高效的车间布局对于提高生产效率、降低物流成本以及优化工作环境具有重大意义。粒子群算法(Particle Swarm Optimization, PSO)是一种借鉴自然界中鸟群飞行行为的全局优化算法,它在解决复杂优化问题时表现出优秀的性能。 车间布局优化的目标通常是在满足特定约束条件下,如设备尺寸、工艺流程顺序、安全距离等,寻找最优的设备位置排列,以最小化物料搬运成本或最大化生产效率。带出入点的车间布局问题更进一步考虑了物料的进出路径,确保物料流的顺畅和高效。 粒子群算法的核心思想是通过模拟鸟群中个体间的相互作用来搜索解空间。每个粒子代表一个可能的解决方案,其位置和速度会随着迭代过程动态调整。算法中包含两个关键参数:惯性权重(Inertia Weight)和学习因子(Learning Factors)。惯性权重控制粒子维持当前运动趋势的程度,而学习因子则影响粒子跟随自身经验和全局最佳经验的趋向。 在本案例中,【优化布局】基于matlab粒子群算法求解带出入点的车间布局优化问题【含Matlab源码 011期】.mp4文件可能包含了详细的视频教程,讲解如何利用MATLAB编程实现PSO算法解决这一问题。MATLAB作为一款强大的数值计算和数据可视化工具,非常适合进行优化算法的实现和调试。 MATLAB代码可能会定义粒子群的初始化,包括粒子数量、粒子的位置和速度,以及搜索空间的边界。接着,将设定适应度函数,该函数根据布局方案的优劣评价每个粒子的解。在每次迭代过程中,粒子会更新其速度和位置,同时更新局部最优解和全局最优解。 在迭代过程中,粒子会根据自身历史最优位置(个人最佳,pBest)和群体历史最优位置(全局最佳,gBest)调整其运动方向。通过平衡探索与开发,PSO算法能够有效地避免早熟收敛,从而找到更优的布局方案。 当达到预设的迭代次数或满足其他停止条件时,算法结束,返回全局最优解,即最佳的车间布局方案。此视频教程可能还会涉及如何分析和解释结果,以及如何调整算法参数以获得更好的性能。 利用粒子群算法求解带出入点的车间布局优化问题,是将先进的计算方法应用于实际工业问题的典型示例。通过学习和理解这个案例,不仅可以掌握PSO算法的原理和应用,还能加深对车间布局优化问题的理解,为实际生产中的决策提供科学依据。
2024-08-23 21:27:06 3.99MB
1
LWIP,全称Lightweight IP,是一款轻量级的TCP/IP协议栈,常用于嵌入式系统中,为物联网设备提供网络连接功能。在LWIP的实现中,`pcb`(Protocol Control Block)是用于管理网络连接的核心数据结构。每个TCP、UDP或其它协议的连接都会对应一个`pcb`实例,它存储了该连接的相关信息,如端口号、状态、缓冲区等。 `pcb->net`这个字段通常是指向与当前`pcb`相关的网络接口的指针。在正常情况下,`pcb`通过`net`字段链接到网络接口,以便进行数据发送和接收。然而,如果`pcb->net`错误地被设置为指向`pcb`自身,那么就可能出现描述中的“死机”问题。这种问题通常是由于编程错误或者内存管理异常导致的。 解决这个问题通常需要以下几个步骤: 1. **代码审查**:需要仔细检查涉及`pcb->net`赋值的代码段,找出可能的逻辑错误。这可能包括初始化过程、连接建立、连接关闭等环节。 2. **调试**:使用调试工具,如GDB,设置断点在`pcb->net`赋值的地方,观察其值的变化。检查在哪个时刻`pcb->net`被错误地指向了`pcb`自身。 3. **内存分析**:检查内存分配和释放的正确性,防止因为内存泄漏或双重释放导致的指针混乱。使用内存检测工具,如Valgrind,可以帮助定位这类问题。 4. **修复代码**:找到问题的根源后,修改代码以修复错误。这可能涉及到修改`pcb`结构体的初始化过程,或者在网络接口处理函数中的错误逻辑。 5. **测试验证**:修复后,进行充分的测试,包括单元测试、集成测试和系统测试,确保问题已经被彻底解决,同时不会引入新的错误。 6. **避免重演**:分析导致问题的原因,考虑在代码设计和开发流程中增加预防措施,例如使用更安全的数据结构,或者增强代码审查和测试的严格性。 在提供的文档《关于LWIP的pcb->next 指向pcb自身,造成死机问题解决方法.doc》中,应该详细阐述了这个问题的具体情况、诊断过程和解决策略。阅读这份文档,可以获取更具体的解决步骤和技术细节。如果你遇到类似的问题,记得参照文档内容,并结合上述通用步骤进行排查和修复。在处理这类问题时,理解和熟悉LWIP的内部工作原理是非常重要的。
2024-08-21 14:33:46 5KB LWIP
1
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学中的一个重要研究领域,它涉及到如何在满足特定约束条件下,如车辆容量、行驶距离等,最有效地规划一系列配送点的访问路径。CVRP( Capacitated Vehicle Routing Problem)是VRP的一个变种,其中考虑了车辆的载货能力限制。在这个问题中,目标是找到最小化总行驶距离的路线方案,同时确保每辆车的载货量不超过其容量。 "Christofides&Eilon Set-E(1969)" 是一个经典的数据集,用于测试和评估CVRP的解决方案。这个数据集是由两位学者,Nicos Christofides和Yehuda Eilon,在1969年提出的。他们对这个问题进行了深入研究,并提出了相关的算法和解决方案,为后续的研究提供了基准。 数据文件的命名遵循了一种特定的格式:“E-n32-k5”,其中: - "E" 表示这是Christofides和Eilon的数据集。 - "n" 后面的数字表示问题中的节点数量,即需要服务的客户点或配送点的数量。 - "k" 后面的数字代表问题允许的最大车辆数。这意味着至少需要k辆车辆来完成所有的配送任务。 这些数据集通常包含每个节点的位置信息(如坐标),以及每个节点的需求量(即货物量)。通过这些数据,我们可以构建出问题的实例,然后运用不同的算法,如贪心算法、遗传算法、模拟退火算法或者现代的深度学习方法,来寻找最优解。 在解决CVRP时,常常会用到Christofides算法,这是一种混合整数线性规划(MILP)的近似算法,它结合了图的最小生成树和最小费用最大流的思想,可以保证找到的解不劣于问题最优解的3/2倍。Eilon算法可能指的是Yehuda Eilon提出的一些早期启发式算法,它们旨在快速找到可行的解决方案,尽管可能不是全局最优解。 在实际应用中,CVRP问题广泛存在于物流配送、城市交通规划、垃圾收集等领域。通过对Christofides&Eilon Set-E-1969数据集的研究,我们可以更好地理解CVRP的复杂性,检验各种算法的性能,并进一步优化物流系统的效率。这个数据集不仅对于学术研究有价值,也是优化实践中不可或缺的工具。
2024-08-20 10:34:05 5KB 车辆路径问题 CVRP
1
如下sql,JSON_OBJECT函数中存在CAST函数,随后报出ParseException问题! SELECT JSON_ARRAYAGG(obj) FROM (SELECT trt.relevance_id,JSON_OBJECT('id',CAST(trt.id AS CHAR),'taskName',trt.task_name,'openStatus',trt.open_status,'taskSort',trt.task_sort) as obj FROM tb_review_task trt ORDER BY trt.task_sort ASC) Caused by: net.sf.jsqlparser.parser.ParseException: Encountered unexpected token: "SELECT" at line 18, column 10. Was expecting one of: "!" "(" "NOT"
2024-08-12 11:37:51 854KB json mysql database
1
多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 Group consensus of heterogeneous multi-agent system (附论文链接+源码Matlab) 多智能体系统——具有非线性不确定干扰的多智能体系统的固定时间事件触发一致性控制(附论文链接+源码Matlab) 2021年五一杯数学建模消防救援问题思路 2021年MathorCup A题自动驾驶中的车辆调头问题思路(附论文 程序链接)
2024-08-11 18:45:48 11KB 网络 网络 matlab
1
linuxqq_3.1.0-9572_arm64.deb wechat_2.0.0_arm64.deb install.sh 下载后解压在一个文件夹内, 卸载之前安装的QQ+wx, 然后回到该文件夹, 点击install.sh进行安装 如果桌面上缺少某一快捷方程式,
2024-08-11 15:47:43 153.37MB 微信 QQ 银河麒麟 Linux
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-11 09:59:49 3.52MB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-11 09:58:48 2.78MB matlab
1