用于图像分类的cifar-10数据集,该数据集共有 60000 张彩色图像,这些图像是32*32,分为“airplane”等10个类。
2022-06-03 22:05:11 19.81MB 分类 文档资料 数据挖掘 人工智能
1
CIFAR-10 是一个图像数据集,包含 60000 张 32x32 分辨率的彩色图像,根据图像内容被分为 10 个类别,包括:airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck,每个类别有 6000 张图片,类别之间的交集为空。
2022-05-20 23:19:02 499.86MB 图像识别 图像检测 物体检测 图像分类
1
CIFAR_MLP_Pytorch_Lightning 使用Pytorch照明库对多层感知器(MLP)神经网络进行了训练。 CIFAR数据集用于对神经网络进行分类。 进行不同的实验并观察结果。 实验类型和网络验证准确性如下: 版本1:B_SIze:32 H_Layers:1 H神经元:512 Optim:SGD Sigmoid Val_Acc:0.4706 版本2:B_SIze:32 H_Layers:1 H神经元:1512优化:SGD Sigmoid Val_Acc:0.4626 版本3:B_SIze:32 H_Layers:1 H神经元:1512优化:SGD RELU Val_Acc:0.5089 版本4:B_SIze:32 H_Layers:1 H神经元:1512优化:ADAM RELU Val_Acc:0.5114 版本5:B_SIze:32 H_Layers:1 H
2022-05-11 11:39:33 3KB Python
1
The CIFAR-10 dataset Version Size md5sum CIFAR-10 python version 163 MB c58f30108f718f92721af3b95e74349a CIFAR-10 Matlab version 175 MB 70270af85842c9e89bb428ec9976c926 CIFAR-10 binary version (suitable for C programs) 162 MB c32a1d4ab5d03f1284b67883e8d87530
2022-05-10 18:10:20 499.71MB 数据集 CIFAR-10
多批次LBFGS 该代码是用于神经网络训练的革命性优化器的实现。 它的全名是“带CUDA的多批次L-BFGS优化器”。 如今,著名的机器学习框架(例如Tensorflow)通常提供“基于梯度”的优化器(GradientDescent,AdaGrad),该优化器通过计算梯度并将其应用于网络来发挥作用。 该代码为Tensorflow实现了一个经过优化的优化器,它采用了“多批L-BFGS”算法(一种基于准牛顿算法的变体),我覆盖了Tensorflow的优化器的默认实现,并定义了一种用于梯度计算的拟新方法,该方法结合了二阶信息,其执行方式比默认优化器更好。 此外,我通过介绍CUDA技术来优化此优化器。 我在GPU上分配计算步骤。 它将优化器的性能提高至少20%。
2022-05-09 17:51:35 31KB Python
1
资源包括:论文,代码以及数据!【均为原创】 实现多种对Cifar-10数据集的分类器,并比较其算法精度。要求基于PyTorch设计并实现以下三种分类器,并利用Cifar-10的测试集评估各分类器的性能:线性回归分类器;全连接人工神经网络分类器;卷积神经网络分类器。后两种分类器的超参数由自由选择,不要雷同。报告要求如下: 问题定义:Cifar-10数据集和分类问题的定义,对求解问题进行建模。 算法设计:介绍三种分类器的设计细节。 实验结果:对三种分类器的性能,以及超参数的选择进行评估。 字数要求:不少于2500字(不得包含任何程序代码)
2022-05-08 14:42:23 1.88MB pytorch 深度学习 算法 分类
1
用Pytorch实现我们的CIFAR10的图像分类 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet,Efficientnet,MobileNet,MobileNetv2,ResNeXt,Pnasnet,RegNet,SeNet,ShuffleNet,ShuffleNetv2,Preact_ResNet,DPN,DLA 在models中有所有模型的实现,然后在main.py中定义了训练的代码,也可以进行预测我们的结果,除此之外,对所有的模型自己进行了测试,并且对准确率做了一个详细的比较,也可以根据此进行测试和比较训练。 在资源中有全部代码的学习资料,代码所有都可运行,可执行,可复现
2022-05-06 20:05:10 24KB python pytorch 人工智能 图像分类
著名的图片分类数据集,原版的在CSDN已经有很多了,这一个版本的是我将原版的数据集导出成图片格式,同时用json文件来标注图片的类别。 本资源只包含CIFAR-10数据集中的测试集, 训练集链接:https://download.csdn.net/download/sinat_22481983/12232436 压缩包内需要包括png格式的图片源文件及同名的json格式标注文件,可直接导入EasyDL中使用。 关于本数据集的官方介绍,请参见: http://www.cs.toronto.edu/~kriz/cifar.html
2022-05-05 20:14:23 28.12MB CIFAR-10 图像分类 深度学习 EasyDL
1
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85274948 【全部课程列表】 day01-机器学习概述、特征工程、机器学习算法 共127页.pptx day02-sklearn、knn、朴素贝叶斯、决策树、随机森林 共102页.pptx day03-线性回归、岭回归、逻辑回归、分类、聚类算法 共86页.pptx day04-Tensorflow基础与进阶 共74页.pptx day05-Tensorflow IO操作-队列和线程、文件读取、图片处理 共40页.pptx day06-Tensorflow、人工神经网络、卷积神经网络、图片识别 共65页.pptx day07-CIFAR图像分类 图像识别、分布式会话函数、分布式TensorFlow、推荐系统 共76页.pptx
2022-05-04 12:05:52 20.9MB 人工智能 机器学习 深度学习 推荐系统
卷积神经网络实现图片分类(CIFAR-10) 保真,主页有实验说明文章,可以相互参考
2022-05-02 18:34:55 5KB cnn 分类 综合资源 人工智能
1