GIQA:生成的图像质量评估 这是ECCV2020“ GIQA:生成的图像质量评估”的正式pytorch实现( )。 该存储库的主要贡献者包括Microsoft Research Asia的Gu Shuyang,Bao Jianmin Bao,Dong Chen和Fang Wen。 相关论文采用GMM-GIQA来改善GAN的性能:PriorGAN( )。 介绍 GIQA旨在解决单个生成图像的质量评估问题。 在此源代码中,我们发布了易于使用的GMM-GIQA和KNN-GIQA代码。 引文 如果您发现我们的代码对您的研究有所帮助,请考虑引用: @article{gu2020giqa, title={GIQA: Generated Image Quality Assessment}, author={Gu, Shuyang and Bao, Jianmin and Chen, D
1
pro_gan_pytorch 包包含 ProGAN 的实现。 论文题为“渐进式增长的 GAN 以提高质量、稳定性和变化”。 链接 -> 训练示例 -> :star: [新] 预训练模型: 请找下预训练模型saved_models/在目录 :star: [新]演示: 存储库现在在samples/目录下包含一个潜在空间插值动画演示。 只需从上面提到的 drive_link 下载所有预训练的权重,并将它们放在demo.py脚本旁边的samples/目录中。 请注意,在demo.py脚本的开头有一些demo.py参数,以便您可以使用它。 该演示加载随机点的图像,然后在它们之间进行线性插值以生成平滑的动画。 你需要有一个好的 GPU(至少 GTX 1070)才能在演示中看到强大的 FPS。 然而,可以优化演示以并行生成图像(目前它是完全顺序的)。 为了在 Generator 中加载权重,该过程是 P
1
生成压缩 TensorFlow实现,用于使用生成对抗网络来学习图像压缩。 该方法由Agustsson等开发。 等基于。 提出的想法非常有趣,并且对它们的方法进行了详细描述。 用法 代码取决于 # Clone $ git clone https://github.com/Justin-Tan/generative-compression.git $ cd generative-compression # To train, check command line arguments $ python3 train.py -h # Run $ python3 train.py -opt momen
1
Image-to-Image Translation with Conditional Adversarial Networks论文加代码,python(tensorflow)实现和lua实现
2022-02-13 18:19:47 67.1MB 论文 代码 pix2pix python
1
TensorLayer中的DCGAN 这是的TensorLayer实现。 寻找文本到图像合成? :NEW_button: :fire: 2019年5月:我们只是更新了此项目以支持TF2和TL2。 请享用! :NEW_button: :fire: 2019年5月:该项目被选为TL项目的默认模板。 先决条件 的Python3.5 3.6 TensorFlow == 2.0.0a0 pip3 install tensorflow-gpu==2.0.0a0 TensorLayer = 2.1.0 pip3 install tensorlayer==2.1.0 用法 首先,将对齐的面部图像从或到data文件夹。 其次,训练GAN: $ python
1
生成对抗神经网络matlab代码表征签名验证的对抗性示例 该存储库包含用于评估对基于 CNN 和基于 LBP 的模型的攻击的代码 [1],以及用于评估 CNN 训练的两种防御机制(Madry 防御 [2] 和 Ensemble 对抗性训练 [3])的脚本。 [1] Hafemann、Luiz G.、Robert Sabourin 和 Luiz S. Oliveira。 “表征和评估离线手写签名验证的对抗性示例”() [2] Madry, A.、Makelov, A.、Schmidt, L.、Tsipras, D. 和 Vladu, A.,2017 年。走向能够抵抗对抗性攻击的深度学习模型。 [3] Tramèr, F.、Kurakin, A.、Papernot, N.、Goodfellow, I.、Boneh, D. 和 McDaniel, P.,2017 年。整体对抗训练:攻击和防御。 安装 首先安装包如下: pip install git+https://github.com/luizgh/sigver.git --process-dependency-links 下载(或克隆)此
2022-02-04 10:53:17 171KB 系统开源
1
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.pdf
2022-01-12 16:15:19 7.11MB CNN
1
在TensorFlow / TensorLayer中开始 BEGAN的TensorFlow / TensorLayer实现 先决条件 Python 2.7或Python 3.3+ 用法 首先,将图像下载到data/celebA : $ python download.py celebA [202599 face images] 其次,训练GAN: $ python main.py --point "25 58" 第三,使用训练有素的生成器生成人脸: $ python generate.py --num_imgs 1000 CelebA的结果 从头到60k(每500次迭代捕获帧)。 gamma=0.5
1
使用深度哈希的图像检索中最惊人的成功主要涉及判别模型,该模型需要标签。在本文中,我们使用二进制生成的adver sarial网络(BGAN)将图像以无监督的方式嵌入到二进制代码中。通过将生成对抗网络(GAN)的输入噪声变量限制为二进制且以每个输入图像的特征为条件,BGAN可以同时学习每个图像的二进制表示形式,并生成与原始图像相似的图像。在提出的框架中,我们解决了两个主要问题: 1)如何不松懈地直接生成二进制代码? 2)如何为二进制表示配备准确率图像检索功能? 我们通过提出新的符号激活策略和指导学习过程的损失函数来解决这些问题,损失函数包括对抗性损失,内容损失和邻域结构损失的新模型
2021-12-16 18:05:48 1.17MB 图像检索 GAN BGAN
1
论文题目:Adversarial Multi-task Learning for Text Classification 作者:Pengfei Liu, Xipeng Qiu and Xuanjing Huang 出处:ACL 2017 论文主要相关:多任务学习、文本分类、情感分析 概要:常规的多任务学习通常单纯的共享某些参数,导致共用特征空间和私有特征空间中存在大量冗余的特征。作者提出了一种对抗性多任务学习框架,缓解了共享特征空间和特定任务特征空间(私有潜在特征空间)之间的相互干扰的问题,并采用对抗学习确保共用特征空间中仅存在共用特征和任务无关的特征,辅以正交约束来去除私有和共用特征空间中冗余的特征。在16个任务的情感分析测试中,该框架比单任务学习平均效果提升了4.1%,比其他多任务学习框架(FS-MTL、 SP-MTL等)效果更好。并且实验结果表明模型的共享特征学习到的知识,容易被迁移到新任务的情感分析中。
1