Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Part One — Matrices
1 Basic properties of vectors and matrices3
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3Matrices: addition and multiplication . . . . . . . . . . . . . . .4
4The transpose of a matrix . . . . . . . . . . . . . . . . . . . . .6
5Square matrices . . . . . . . . . . . . . . . . . . . . . . . . . . .6
6Linear forms and quadratic forms . . . . . . . . . . . . . . . . .7
7The rank of a matrix . . . . . . . . . . . . . . . . . . . . . . . .8
8The inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
9The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11 Partitioned matrices . . . . . . . . . . . . . . . . . . . . . . . . 11
12 Complex matrices . . . . . . . . . . . . . . . . . . . . . . . . . 13
13 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . 14
14 Schur’s decomposition theorem . . . . . . . . . . . . . . . . . . 17
15 The Jordan decomposition . . . . . . . . . . . . . . . . . . . . . 18
16 The singular-value decomposition . . . . . . . . . . . . . . . . . 19
17 Further results concerning eigenvalues . . . . . . . . . . . . . . 20
18 Positive (semi)definite matrices . . . . . . . . . . . . . . . . . . 23
19 Three further results for positive definite matrices . . . . . . . 25
20 A useful result . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Kronecker products, the vec operator and the Moore-Penrose inverse 31
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2The Kronecker product . . . . . . . . . . . . . . . . . . . . . . 31
3Eigenvalues of a Kronecker product . . . . . . . . . . . . . . . . 33
4The vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5The Moore-Penrose (MP) inverse . . . . . . . . . . . . . . . . . 36
6Existence and uniqueness of the MP inverse . . . . . . . . . . . 37viContents
7Some properties of the MP inverse . . . . . . . . . . . . . . . . 38
8Further properties . . . . . . . . . . . . . . . . . . . . . . . . . 39
9The solution of linear equation systems . . . . . . . . . . . . . 41
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Miscellaneous matrix results47
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2The adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . . 47
3Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
4Bordered determinants . . . . . . . . . . . . . . . . . . . . . . . 51
5The matrix equation AX = 0 . . . . . . . . . . . . . . . . . . . 51
6The Hadamard product . . . . . . . . . . . . . . . . . . . . . . 53
7The commutation matrix Kmn. . . . . . . . . . . . . . . . . . 54
8The duplication matrix Dn. . . . . . . . . . . . . . . . . . . . 56
9Relationship between Dn+1and Dn, I . . . . . . . . . . . . . . 58
10 Relationship between Dn+1and Dn, II . . . . . . . . . . . . . . 60
11 Conditions for a quadratic form to be positive (negative) sub-
ject to linear constraints . . . . . . . . . . . . . . . . . . . . . . 61
12 Necessary and sufficient conditions for r(A : B) = r(A) + r(B)64
13 The bordered Gramian matrix . . . . . . . . . . . . . . . . . . 66
14 The equations X1A + X2B′= G1,X1B = G2. . . . . . . . . . 68
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Part Two — Differentials: the theory
4 Mathematical preliminaries75
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2Interior points and accumulation points . . . . . . . . . . . . . 75
3Open and closed sets . . . . . . . . . . . . . . . . . . . . . . . . 76
4The Bolzano-Weierstrass theorem . . . . . . . . . . . . . . . . . 79
5Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6The limit of a function . . . . . . . . . . . . . . . . . . . . . . . 81
7Continuous functions and compactness . . . . . . . . . . . . . . 82
8Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9Convex and concave functions . . . . . . . . . . . . . . . . . . . 85
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 Differentials and differentiability89
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3Differentiability and linear approximation . . . . . . . . . . . . 91
4The differential of a vector function . . . . . . . . . . . . . . . . 93
5Uniqueness of the differential . . . . . . . . . . . . . . . . . . . 95
6Continuity of differentiable functions . . . . . . . . . . . . . . . 96
7Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 97Contentsvii
8The first identification theorem . . . . . . . . . . . . . . . . . . 98
9Existence of the differential, I . . . . . . . . . . . . . . . . . . . 99
10 Existence of the differential, II . . . . . . . . . . . . . . . . . . 101
11 Continuous differentiability . . . . . . . . . . . . . . . . . . . . 103
12 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13 Cauchy invariance . . . . . . . . . . . . . . . . . . . . . . . . . 105
14 The mean-value theorem for real-valued functions . . . . . . . . 106
15 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 107
16 Some remarks on notation . . . . . . . . . . . . . . . . . . . . . 109
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6 The second differential113
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2Second-order partial derivatives . . . . . . . . . . . . . . . . . . 113
3The Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . 114
4Twice differentiability and second-order approximation, I . . . 115
5Definition of twice differentiability . . . . . . . . . . . . . . . . 116
6The second differential . . . . . . . . . . . . . . . . . . . . . . . 118
7(Column) symmetry of the Hessian matrix . . . . . . . . . . . . 120
8The second identification theorem . . . . . . . . . . . . . . . . 122
9Twice differentiability and second-order approximation, II . . . 123
10 Chain rule for Hessian matrices . . . . . . . . . . . . . . . . . . 125
11 The analogue for second differentials . . . . . . . . . . . . . . . 126
12 Taylor’s theorem for real-valued functions . . . . . . . . . . . . 128
13 Higher-order differentials . . . . . . . . . . . . . . . . . . . . . . 129
14 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7 Static optimization133
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2Unconstrained optimization . . . . . . . . . . . . . . . . . . . . 134
3The existence of absolute extrema . . . . . . . . . . . . . . . . 135
4Necessary conditions for a local minimum . . . . . . . . . . . . 137
5Sufficient conditions for a local minimum: first-derivative test . 138
6Sufficient conditions for a local minimum: second-derivative test140
7Characterization of differentiable convex functions . . . . . . . 142
8Characterization of twice differentiable convex functions . . . . 145
9Sufficient conditions for an absolute minimum . . . . . . . . . . 147
10 Monotonic transformations . . . . . . . . . . . . . . . . . . . . 147
11 Optimization subject to constraints . . . . . . . . . . . . . . . . 148
12 Necessary conditions for a local minimum under constraints . . 149
13 Sufficient conditions for a local minimum under constraints . . 154
14 Sufficient conditions for an absolute minimum under constraints158
15 A note on constraints in matrix form . . . . . . . . . . . . . . . 159
16 Economic interpretation of Lagrange multipliers . . . . . . . . . 160
Appendix: the implicit function theorem . . . . . . . . . . . . . . . . 162viiiContents
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Part Three — Differentials: the practice
8 Some important differentials167
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2Fundamental rules of differential calculus . . . . . . . . . . . . 167
3The differential of a determinant . . . . . . . . . . . . . . . . . 169
4The differential of an inverse . . . . . . . . . . . . . . . . . . . 171
5Differential of the Moore-Penrose inverse . . . . . . . . . . . . . 172
6The differential of the adjoint matrix . . . . . . . . . . . . . . . 175
7On differentiating eigenvalues and eigenvectors . . . . . . . . . 177
8The differential of eigenvalues and eigenvectors: symmetric case 179
9The differential of eigenvalues and eigenvectors: complex case . 182
10 Two alternative expressions for dλ . . . . . . . . . . . . . . . . 185
11 Second differential of the eigenvalue function . . . . . . . . . . 188
12 Multiple eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 189
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9 First-order differentials and Jacobian matrices193
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3Bad notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4Good notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5Identification of Jacobian matrices . . . . . . . . . . . . . . . . 198
6The first identification table . . . . . . . . . . . . . . . . . . . . 198
7Partitioning of the derivative . . . . . . . . . . . . . . . . . . . 199
8Scalar functions of a vector . . . . . . . . . . . . . . . . . . . . 200
9Scalar functions of a matrix, I: trace . . . . . . . . . . . . . . . 200
10 Scalar functions of a matrix, II: determinant . . . . . . . . . . . 202
11 Scalar functions of a matrix, III: eigenvalue . . . . . . . . . . . 204
12 Two examples of vector functions . . . . . . . . . . . . . . . . . 204
13 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14 Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . 208
15 Some other problems . . . . . . . . . . . . . . . . . . . . . . . . 210
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10 Second-order differentials and Hessian matrices213
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2The Hessian matrix of a matrix function . . . . . . . . . . . . . 213
3Identification of Hessian matrices . . . . . . . . . . . . . . . . . 214
4The second identification table . . . . . . . . . . . . . . . . . . 215
5An explicit formula for the Hessian matrix . . . . . . . . . . . . 217
6Scalar functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7Vector functions . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8Matrix functions, I . . . . . . . . . . . . . . . . . . . . . . . . . 220Contentsix
9Matrix functions, II . . . . . . . . . . . . . . . . . . . . . . . . 221
Part Four — Inequalities
11 Inequalities225
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2The Cauchy-Schwarz inequality . . . . . . . . . . . . . . . . . . 225
3Matrix analogues of the Cauchy-Schwarz inequality . . . . . . . 227
4The theorem of the arithmetic and geometric means . . . . . . 228
5The Rayleigh quotient . . . . . . . . . . . . . . . . . . . . . . . 230
6Concavity of λ1, convexity of λn. . . . . . . . . . . . . . . . . 231
7Variational description of eigenvalues . . . . . . . . . . . . . . . 232
8Fischer’s min-max theorem . . . . . . . . . . . . . . . . . . . . 233
9Monotonicity of the eigenvalues . . . . . . . . . . . . . . . . . . 235
10 The Poincar´e separation theorem . . . . . . . . . . . . . . . . . 236
11 Two corollaries of Poincar´e’s theorem . . . . . . . . . . . . . . 237
12 Further consequences of the Poincar´e theorem . . . . . . . . . . 238
13 Multiplicative version . . . . . . . . . . . . . . . . . . . . . . . 239
14 The maximum of a bilinear form . . . . . . . . . . . . . . . . . 241
15 Hadamard’s inequality . . . . . . . . . . . . . . . . . . . . . . . 242
16 An interlude: Karamata’s inequality . . . . . . . . . . . . . . . 243
17 Karamata’s inequality applied to eigenvalues . . . . . . . . . . 245
18 An inequality concerning positive semidefinite matrices . . . . . 245
19 A representation theorem for (Pap
i)1/p. . . . . . . . . . . . . 246
20 A representation theorem for (trAp)1/p. . . . . . . . . . . . . . 248
21 H¨older’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 249
22 Concavity of log|A| . . . . . . . . . . . . . . . . . . . . . . . . . 250
23 Minkowski’s inequality . . . . . . . . . . . . . . . . . . . . . . . 252
24 Quasilinear representation of |A|1/n. . . . . . . . . . . . . . . . 254
25 Minkowski’s determinant theorem . . . . . . . . . . . . . . . . . 256
26 Weighted means of order p . . . . . . . . . . . . . . . . . . . . . 256
27 Schl¨omilch’s inequality . . . . . . . . . . . . . . . . . . . . . . . 259
28 Curvature properties of Mp(x,a) . . . . . . . . . . . . . . . . . 260
29 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
30 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 263
31 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 263
32 Restricted least squares: matrix version . . . . . . . . . . . . . 265
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Part Five — The linear model
12 Statistical preliminaries275
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
2The cumulative distribution function . . . . . . . . . . . . . . . 275
3The joint density function . . . . . . . . . . . . . . . . . . . . . 276
4Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276xContents
5Variance and covariance . . . . . . . . . . . . . . . . . . . . . . 277
6Independence of two random variables . . . . . . . . . . . . . . 279
7Independence of n random variables . . . . . . . . . . . . . . . 281
8Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9The one-dimensional normal distribution . . . . . . . . . . . . . 281
10 The multivariate normal distribution . . . . . . . . . . . . . . . 282
11 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
13 The linear regression model287
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2Affine minimum-trace unbiased estimation . . . . . . . . . . . . 288
3The Gauss-Markov theorem . . . . . . . . . . . . . . . . . . . . 289
4The method of least squares . . . . . . . . . . . . . . . . . . . . 292
5Aitken’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 295
7Estimable functions . . . . . . . . . . . . . . . . . . . . . . . . 297
8Linear constraints: the case M(R′) ⊂ M(X′) . . . . . . . . . . 299
9Linear constraints: the general case . . . . . . . . . . . . . . . . 302
10 Linear constraints: the case M(R′) ∩ M(X′) = {0} . . . . . . . 305
11 A singular variance matrix: the case M(X) ⊂ M(V ) . . . . . . 306
12 A singular variance matrix: the case r(X′V+X) = r(X) . . . . 308
13 A singular variance matrix: the general case, I . . . . . . . . . . 309
14 Explicit and implicit linear constraints . . . . . . . . . . . . . . 310
15 The general linear model, I . . . . . . . . . . . . . . . . . . . . 313
16 A singular variance matrix: the general case, II . . . . . . . . . 314
17 The general linear model, II . . . . . . . . . . . . . . . . . . . . 317
18 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 318
19 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 319
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
14 Further topics in the linear model323
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2Best quadratic unbiased estimation of σ2. . . . . . . . . . . . 323
3The best quadratic and positive unbiased estimator of σ2. . . 324
4The best quadratic unbiased estimator of σ2. . . . . . . . . . . 326
5Best quadratic invariant estimation of σ2. . . . . . . . . . . . 329
6The best quadratic and positive invariant estimator of σ2. . . 330
7The best quadratic invariant estimator of σ2. . . . . . . . . . . 331
8Best quadratic unbiased estimation: multivariate normal case . 332
9Bounds for the bias of the least squares estimator of σ2, I . . . 335
10 Bounds for the bias of the least squares estimator of σ2, II . . . 336
11 The prediction of disturbances . . . . . . . . . . . . . . . . . . 338
12 Best linear unbiased predictors with scalar variance matrix . . 339
13 Best linear unbiased predictors with fixed variance matrix, I . . 341Contentsxi
14 Best linear unbiased predictors with fixed variance matrix, II . 344
15 Local sensitivity of the posterior mean . . . . . . . . . . . . . . 345
16 Local sensitivity of the posterior precision . . . . . . . . . . . . 347
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Part Six — Applications to maximum likelihood estimation
15 Maximum likelihood estimation351
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2The method of maximum likelihood (ML) . . . . . . . . . . . . 351
3ML estimation of the multivariate normal distribution . . . . . 352
4Symmetry: implicit versus explicit treatment . . . . . . . . . . 354
5The treatment of positive definiteness . . . . . . . . . . . . . . 355
6The information matrix . . . . . . . . . . . . . . . . . . . . . . 356
7ML estimation of the multivariate normal distribution: distinct
means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8The multivariate linear regression model . . . . . . . . . . . . . 358
9The errors-in-variables model . . . . . . . . . . . . . . . . . . . 361
10 The non-linear regression model with normal errors . . . . . . . 364
11 Special case: functional independence of mean- and variance
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
12 Generalization of Theorem 6 . . . . . . . . . . . . . . . . . . . 366
Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
16 Simultaneous equations371
1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
2The simultaneous equations model . . . . . . . . . . . . . . . . 371
3The identification problem . . . . . . . . . . . . . . . . . . . . . 373
4Identification with linear constraints on B and Γ only . . . . . 375
5Identification with linear constraints on B,Γ and Σ . . . . . . . 375
6Non-linear constraints . . . . . . . . . . . . . . . . . . . . . . . 377
7Full-information maximum likelihood (FIML): the information
matrix (general case) . . . . . . . . . . . . . . . . . . . . . . . . 378
8Full-information maximum likelihood (FIML): the asymptotic
variance matrix (special case) . . . . . . . . . . . . . . . . . . . 380
9Limited-informationmaximumlikelihood(LIML): thefirst-order
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10 Limited-information maximum likelihood (LIML): the informa-
tion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11 Limited-information maximum likelihood (LIML): the asymp-
totic variance matrix . . . . . . . . . . . . . . . . . . . . . . . . 388
Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
2022-12-28 22:14:17
1.68MB
矩阵微分
1