本文件功能:用BP神经网络预测温湿度。
本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。
本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。
本次仿真存在不足:
1.未修改学习率、附加动量等参量没有解决BP网络收敛慢的问题。
2.没有使用全局优化的算法,没有解决BP容易陷入极值点的问题。
这种用BP网络来进行预测的模型网上有很多,但是大多数都是预测风力发电等,可能也是因为该BP模型是40年代所提出,我是没有找到有温湿度的预测,该代码纯属自己改写的,并且运行无误,现在分享出来,让大家节省一些时间去研究更有深度的算法。
1