OV5640图像采集与HDMI显示:基于AXI总线DDR3存储与FPGA实现方案(Verilog代码实现,图像分辨率1280x1024),OV5640图像采集与HDMI显示:基于AXI总线DDR3存储与FPGA实现,分辨率达1280x1024,ov5640图像采集及hdmi显示,verilog代码实现 OV5640摄像头采集图像,通过AXI4总线存储到DDR3,HDMI通过AXI4总线读取DDR3数据并显示,xilinx 7系列fpga实现。 AXI 总线数据位宽512,图像分辨率为1280x1024 ,OV5640图像采集;HDMI显示;AXI4总线;DDR3存储;Xilinx 7系列FPGA实现;512位宽AXI总线;1280x1024分辨率。,OV5640图像采集存储及HDMI显示 - AXI4总线接口,512位宽数据流在Xilinx 7系列FPGA上的Verilog实现
2025-10-14 14:18:15 10.66MB 正则表达式
1
内容概要:本文档《Libero IDE开发教程.pdf》详细介绍了Libero集成开发环境的使用方法,涵盖其内部多个工具的使用流程。具体包括SmartDesign、ViewDraw、Synplify、WaveFormer、ModelSim、Designer和FlashPro。这些工具主要用于FPGA和CPLD的开发,从创建工程、添加模块、进行逻辑综合、生成激励波形、仿真验证到最终的布局布线和编程下载。每个工具都具有独特的功能,例如SmartDesign用于图形化创建和管理基于模块的文件,Synplify专注于逻辑综合,WaveFormer提供波形激励生成,ModelSim支持功能仿真,Designer负责布局布线及时序分析,而FlashPro则用于编程下载。文档还特别指出Libero环境中使用的第三方软件为定制版本,存在一些功能限制。此外,各工具的操作指南部分提供了详细的步骤指导,从建立新工程到最终执行相关任务,确保用户能够顺利完成开发流程。
2025-10-14 10:00:53 11.96MB FPGA开发 Libero 嵌入式系统 VHDL/Verilog
1
simulink与modelsim联合仿真buck闭环设计 主电路用simulink搭建,控制电路完全有verilog语言实现(包括DPWM,PI补偿器) 适用于验证基于fpga的电力电子变换器控制,由于控制回路完全由verilog语言编写,因此仿真验证通过,可直接下载进fpga板子,极大缩短了开发数字电源的研发周期。 buck变换器指标如下: (*额定输入电压*) Vin->20, (*最大输入电压*) Vin_max->25, (*最小输入电压*) Vin_min->15, (*输出电压*)Vo>10, (*开关频率*)fs->50*10^3, (*输出功率*)Po->100, (*最小占空比*)Dmin->0.1, (*额定占空比*)D ->0.5, (*最大占空比*) Dmax->0.6, (*额定输出电流*) Io-> 10 包括:buck主电路以及控制回路设计文档,仿真文件。 以及simulink与modelsim的联合仿真调试说明文档。
2025-10-13 20:55:48 290KB 编程语言
1
内容概要:本文详细介绍了利用野火征途Pro FPGA开发板实现基于帧差法的运动目标检测与跟踪系统的全过程。首先,通过OV5640摄像头采集视频流并存储于DDR3内存中进行帧缓存。接着,采用Verilog编写帧差处理模块,计算相邻两帧之间的灰度差异,并通过二值化处理将差异结果转换为二进制图像。然后,利用边界扫描法对目标进行定位,最终通过TFT LCD、VGA和HDMI三种显示接口展示检测结果。文中还讨论了一些优化技巧,如使用Y通道代替RGB全量计算节省资源,以及解决OV5640摄像头在低光照条件下的噪点问题的方法。 适合人群:对FPGA开发有一定了解的研究人员和技术爱好者。 使用场景及目标:适用于需要进行运动目标检测与跟踪的应用场合,如安防监控、智能交通等领域。目标是帮助读者掌握如何在FPGA平台上构建高效的运动目标检测系统。 其他说明:文中提供了详细的代码片段和调试经验分享,有助于读者更好地理解和应用相关技术。同时提到未来可能引入YOLO算法进一步提升检测精度。
2025-10-13 20:23:37 878KB
1
在现代数字视频处理领域,FPGA(现场可编程门阵列)由于其出色的并行处理能力和实时性能,成为实现视频缩放拼接的理想选择。特别是在需要高效率处理和定制功能的应用场景中,如HDMI视频输入的实时处理。本文将详细探讨基于FPGA的纯Verilog实现的视频缩放拼接技术,特别是如何将1080P分辨率的HDMI输入视频信号缩小到960×540,并将缩小后的图像复制四份进行拼接,最终实现将四路视频拼接显示在一块1080P分辨率的屏幕上。 视频缩放技术是指将原始视频图像的分辨率进行调整,以适应新的显示需求或带宽限制。在本项目中,缩放的目标是将1080P(即1920×1080分辨率)的视频信号缩小到960×540,这是一个将视频信号的高度和宽度分别缩小到原来的一半的过程。缩放处理不仅仅是一个简单的像素丢弃过程,它还需要考虑图像质量的保持,这意味着在缩放过程中需要进行有效的插值计算,以生成新的像素点,从而在视觉上尽可能地保持原始图像的细节和清晰度。 接下来,视频拼接技术是指将多个视频图像源经过特定算法处理后,组成一个大的连续图像的过程。在本项目中,将四路缩小后的视频图像进行拼接,形成一个整体的视频输出。这一过程涉及到图像的边界处理、颜色校正、亮度和对比度调整等,以确保拼接后的视频在不同视频流之间的过渡自然,没有明显的界限和色差。 为了在FPGA上实现上述功能,纯Verilog的硬件描述语言被用于编写视频处理算法。Verilog不仅提供了编写并行处理逻辑的能力,还允许设计者直接控制硬件资源,从而实现定制化的视频处理流程。在本项目中,Verilog代码需要包括视频信号的接收、缩放处理、图像复制、拼接算法以及最终的显示驱动逻辑。 通过技术文档中的描述,我们可以了解到项目的设计流程和结构。项目文档详细介绍了视频处理系统的整体设计思想,包括系统架构的构建、各个模块的功能描述以及如何在FPGA上实现这些模块。技术细节方面,文档分析了缩放算法的实现,包括滤波器设计、图像插值等关键步骤,以及拼接过程中如何处理多路视频流的同步和对齐。 此外,文档中还提到了技术在视频处理领域中的应用越来越广泛,尤其是在需要并行处理能力和实时性的场合。这也正是FPGA技术的强项,它能够提供高效的视频处理解决方案,以满足高端显示设备和专业视频处理的需求。 FPGA纯Verilog视频缩放拼接项目展示了一个复杂但又高度有效的视频处理流程,不仅需要深入的算法研究,还需要对FPGA硬件平台有深刻的理解。通过本项目,我们可以看到FPGA技术在现代视频处理领域中的巨大潜力和应用价值。
2025-10-09 17:17:51 12KB
1
VHDL(VHSIC Hardware Description Language)和Verilog是两种广泛用于数字系统设计的硬件描述语言。它们允许工程师在抽象级别上描述电子系统,包括逻辑门、触发器、寄存器、运算器等,以及更复杂的算法和系统。VHDL转换成Verilog的过程,即vvToForm工具,是为了在不同设计环境中实现代码互操作性,特别是在半导体行业的EDA(电子设计自动化)工具中。 VHDL是一种结构化和形式化的语言,它的语法源自Ada语言,强调清晰的结构和丰富的数据类型。而Verilog则更接近C语言,注重简洁和效率。两者在描述方式上有所不同,但都能表达相同的硬件逻辑。 vvToForm工具的主要功能是将RTL(Register Transfer Level)级别的VHDL代码转换为等效的Verilog代码。RTL描述是硬件设计的一个关键阶段,它关注的是数据在寄存器之间的转移和操作,而不涉及具体的物理实现细节。这个转换过程涉及到以下几个关键技术点: 1. **语法解析**:vvToForm首先需要解析VHDL源代码,理解其语法规则,识别实体、结构体、进程、类型定义等元素。 2. **语义理解**:工具需要深入理解VHDL的语义,包括信号的赋值、并行执行、时序控制等,以便在Verilog中找到合适的表示。 3. **数据类型映射**:VHDL拥有丰富的数据类型,如std_logic、std_logic_vector等,而Verilog主要使用wire和reg。vvToForm需要将这些类型映射到Verilog相应的类型。 4. **结构转换**:VHDL的结构体和模块在Verilog中对应为module,vvToForm需将VHDL的结构转换为Verilog的模块结构。 5. **过程和语句转换**:VHDL的进程和条件语句在Verilog中可能表现为always块、if-else语句等。vvToForm需要将这些语句结构转换为Verilog的等价形式。 6. **并发和顺序行为处理**:VHDL中的并发语句在Verilog中可能需要通过敏感列表和时钟边沿检测来实现。 7. **端口映射**:VHDL的输入、输出、 inout端口需要映射到Verilog的input、output、inout端口。 8. **综合优化**:转换后的Verilog代码可能需要进行额外的综合优化,以适应特定的FPGA或ASIC工艺库。 在实际工程中,这种转换可能并不总是1:1的,因为两种语言在某些方面有不同的表达方式。例如,VHDL的库和包在Verilog中可能没有直接对应的概念。因此,vvToForm工具可能需要对设计进行一些调整以保持逻辑等价。 "vhdl2vl1"这个文件可能是vvToForm工具的一部分,可能是一个示例或配置文件,用于演示或指导VHDL到Verilog的转换过程。 总结来说,VHDL到Verilog的转换是一个复杂的任务,涉及到对两种语言的深入理解和精确的映射规则。vvToForm工具的目的是提供一个自动化的解决方案,帮助工程师在不同的设计环境中无缝地迁移和协作。这个过程对于促进多语言设计环境的兼容性和灵活性具有重要意义。
2025-10-04 17:03:41 185KB 机械电子
1
基于FPGA的Verilog实现FOC电流环系统设计与实现方法——基于ADC与S-PWM算法优化及其代码解读手册,带simulink模型与RTL图解。,基于FPGA的FOC电流环手动编写Verilog实现:高效、可读性强的源码与Simulink模型组合包,基于FPGA的FOC电流环实现 1.仅包含基本的电流环 2.采用verilog语言编写 3.电流环PI控制器 4.采用SVPWM算法 5.均通过处理转为整数运算 6.采用ADC采样,型号为AD7928,反馈为AS5600 7.采用串口通信 8.代码层次结构清晰,可读性强 9.代码与实际硬件相结合,便于理解 10.包含对应的simulink模型(结合模型,和rtl图,更容易理解代码) 11.代码可以运行 12.适用于采用foc控制的bldc和pmsm 13.此为源码和simulink模型的价,不包含硬件的图纸 A1 不是用Matlab等工具自动生成的代码,而是基于verilog,手动编写的 A2 二电平的Svpwm算法 A3 仅包含电流闭环 A4 单采样单更新,中断频率 计算频率,可以基于自己所移植的硬件,重新设置 ,基于FPGA的FO
2025-09-27 15:53:14 83KB xbox
1
内容概要:本文详细探讨了在FPGA上使用Verilog语言实现SAD(Sum of Absolute Differences)算法及其与AHB接口的数据传输交互。SAD算法用于图像匹配和运动估计,文中介绍了SAD算法的计算模块设计,采用流水线架构提升计算效率。此外,还讨论了三种窗口配置(计算、储存及AHB接口数据交互)的功能实现,并详细描述了AHB接口的数据传输模块和状态查询功能的设计。最后,通过仿真测试和硬件验证确保了系统的正确性和高效性。 适合人群:对FPGA开发有一定了解,特别是从事图像处理和嵌入式系统设计的专业人士。 使用场景及目标:适用于需要高效图像处理的应用场景,如视频编码、机器视觉等。目标是通过优化SAD算法和AHB接口设计,提高图像处理的速度和精度。 阅读建议:读者可以通过本文深入了解FPGA在图像处理中的应用,尤其是SAD算法的具体实现细节和AHB接口的数据传输机制。建议结合实际项目进行实践,以更好地掌握相关技术和方法。
2025-09-26 15:41:26 417KB
1
据多位下载的同学反应,该代码实现与标准协议有差异,我仔细核查了,确实有差异,代码需修正,请暂不要下载,修正后我会修改说明,谢谢大家支持。 (IRIG-B的Verilog实现,可综合,含python代码,可相互验证,具体原理说明见:https://blog.csdn.net/jz_ddk/article/details/147594965 使用遇到问题可在资源或博客提问。提供有限支持。)
2025-09-25 21:55:58 3KB IRIG-B verilog python
1
基于Vivado平台的AD9680 FPGA芯片测试程序:高速采样、lane4信号传输与jesd204b协议处理_Verilog实现,基于Vivado平台的AD9680 FPGA芯片测试程序——Verilog编写,实现1G采样率Lane4与JESD204B接收功能,基于vivado的ad9680 FPGA芯片测试程序,1g采样率lane4。 verilog编写,包括配置ad,配置时钟,jesd204b接收 ,基于您的描述,提取的核心关键词为: 基于Vivado的AD9680; FPGA芯片测试程序; 1G采样率; Lane4; Verilog编写; 配置AD; 配置时钟; JESD204B接收 结果用分号分隔为: 基于Vivado的AD9680; FPGA芯片测试; 1G采样率; Lane4; Verilog编程; AD配置; 时钟配置; JESD204B接收 这些关键词应该能概括您所描述的基于Vivado的ad9680 FPGA芯片测试程序的主要内容。,基于Vivado的AD9680 FPGA测试程序:1G采样率JESD204B接收配置与AD时钟设置
2025-09-23 17:29:45 355KB kind
1