这个包是Julia中概率图形模型算法的轻量级实现 特征 目前,它处理离散因子图的操作(使用 API 构建或通过从 UAI Competition 格式的文件加载),以及通过信念传播(边际、最大边际和混合边际推理)进行近似推理。 因子图是由变量节点和因子节点组成的二分图。变量节点与随机变量相关联,因子节点与域是相邻(变量)节点的直接乘积的函数相关联。在最简单的离散情况下,因子节点与表示函数的多维数组(因子)相关联。
2022-06-10 09:07:00 265KB julia 算法
数据挖掘 贝叶斯算法 C++ 贝叶斯算法一般都用MATLAB实现,好不容易找到个C++的,可以用到工程中去

通过分析设备故障诊断与维修所面临的主要问题以及当前常用诊断策略存在的局限性, 研究
基于贝叶斯网络的故障诊断策略优化方法。提出了适合于表达诊断问题的基于故障假设2观测2维修操
作节点的贝叶斯网络结构, 阐述了基于贝叶斯网络的故障诊断策略优化方法的基本思想和优化算法。 该
方法综合考虑了多故障、 有观测操作以及操作之间有依赖关系等情况。最后通过应用实例, 证实了该方
法在信息不确定条件下进行诊断与维修决策的有效性。

1
为解决隧道风险评估中存在的主观性大、结果不准确的问题,提出基于事故树和贝叶斯网络的区间概率等级、权重信心指标与置信区间相结合的综合风险概率估计法,并将其应用于渔寮隧道的坍塌风险评估中。首先利用事故树构建贝叶斯网络,并利用案例中因素之间的依赖关系得出节点的条件概率(联合概率)。然后利用提出的区间概率等级划分与权重信心指标法进行调查,得出专家j对于基本事件xi出现概率的估计值Pij,由所有专家的估计值构建样本空间Ui及其统计量,通过引入置信区间的方法得出基本事件xi出现的概率范围。获得所有事件的概率范围后与贝叶斯网络的条件概率相结合进行风险推断,保证了风险评估的科学性和准确性,同时可利用该模型进行事故原因诊断。
2022-06-01 03:39:27 1.31MB 事故树 贝叶斯网络 隧道塌陷 模糊数学
1
3.3 智能故障诊断算法 飞机PHM系统智能故障诊断算法依赖于人 工智能技术,常用的智能诊断方法有以下4种。 1)基于神经网络的故障诊断 将系统正常工作检测到的数据进行数据预处 理,提 取 出 特 征 量,离 线 输 入 到 神 经 网 络 进 行 学 习,获得神经网络权值,该神经网络作为系统正常 的模型[23]。当实际系统运行时,检测系统进行处 理后与神经网络比较,当系统输出与神经网络输 出之差超出阈值,则可以判断为系统故障,如图6 所示。 图6 基于神经网络的故障诊断 Fig.6 Fault diagnosis based on neural network     2)基于支持向量机的故障诊断 支 持 向 量 机 (Support Vector Machines, SVM)是建立 在 结 构 风 险 最 小 化 的 原 则 基 础 上, 追求有限样本下最优解的方法。SVM 用 于 故 障 诊断实质上是一个分类问题,它根据飞机运行过 程中产生的各种信息(如振动频谱、波形特征、相 关运行参数等),判断其是否有故障,并判断故障 产生的原因和部位。采用SVM 能在训练样本很 小的情况下很好的达到分类推广的目的,而且不 需要预先知道故障分类的先验知识,如图7所示。 图中R1、R2 和R3 分别为3个故障区域;ω1、ω2 和 ω3 分别为R1、R2 和R3 的权值。 图7 支持向量机故障分类  Fig.7 Fault classification based on support vector machine(SVM) 3)多传感器信息融合故障诊断 信息融合是将多源信息加以智能合 成,产 生 比单一信息源更精确、更完全的估计和判决。多 传感器信 息 融 合 方 法 包 括 基 于 权 系 数 的 融 合 方 法、基于参数 估 计 的 信 息 融 合 方 法、基 于 D-S推 理理论的融 合 方 法、基 于 Kalman滤 波 的 融 合 方 法、基于模糊神经网络的融合方法和基于粗糙集 理论的融合方法等[24],PHM 系统常采用的混 合 式信息融合结构如图8所示。 图8所示结 构 可 以 同 时 进 行 原 始 传 感 器 数 据和特征 数 据 的 融 合,在 数 据 融 合 的 过 程 中 可 以根据 需 要 从 原 始 传 感 器 信 号 中 寻 找 有 用 信 息,进而 有 效 提 高 运 算 结 果 精 度。然 后 再 采 用 独立故障 分 类 算 法 对 特 征 信 号 进 行 处 理,实 现 故障隔离。 4)模糊逻辑推理 模糊逻辑推理基于隶属度函数将系统输入进 行融合,产生输出[25]。在完成了隶属度函数度量 之后,通过诸如求和或求最大值等方法将不同隶 属度函数融合在一起,最终利用融合后的隶属度 函数计算融合输出结果,如图9所示。
1
genie2_setup.rar 安装包
2022-05-30 02:13:55 8.36MB genie
1
c#实现的贝叶斯网络数据分类器,可以自己设定节点数目,学习速率,进行分类学习。
2022-05-26 18:58:48 1.81MB 贝叶斯网络 分类器 源码
1

基于全过程综合敌我识别中不同阶段综合敌我识别信息来源的差异, 采用动态贝叶斯网络进行建模. 在建
模过程中, 由于参数众多、样本难以全面获得、学习训练计算量巨大等问题, 将随机模糊思想引入参数学习, 从而既
可充分利用先验信息, 又尽可能地消除主观因素. 最后仿真了整个过程, 其结果验证了所提出方法的有效性.

2022-05-24 15:39:04 200KB 融合识别|贝叶斯网络|随机模糊
1
为获得正确的节点次序,提高K2算法的执行效率和精确度,提出一种构建基因调控网络的IE―K2算法。基于两个节点互信息构建无向图,通过引入联合信息熵来获得最佳的节点次序。在Alann网络中的实验结果表明,其预测的准确率优于爬山算法和随机节点顺序的K2算法;将IE―K2算法用于构建酿酒酵母的基因调控网络,通过现有文献证明了调控关系的正确性,结果显示了该算法的有效性。
2022-05-23 22:33:22 369KB 自然科学 论文
1
pybn (下架):请尝试 一个用于贝叶斯网络建模和推理的简单 python 库 特点: 具有以下功能的有向无环图 (DAG) 类:父母、孩子、祖先、后代、所有 v 结构、道德化。 无向图实现。 用于测试独立性的 a-Separation 类。 i-Separation,一种在 DAG 中测试独立性的替代方法,它考虑了初始变量及其后代,并且在更大的网络中速度更快。 具有乘法、除法、边缘化等操作的条件概率表 (CPT) 实现。 消除排序(最小邻居、最小权重、最小填充、加权最小填充) 变量消除(删除贫变量,独立于证据变量,创建一张新的根变量表,等等)。 实用程序: 从 BIF 文件加载网络。
2022-05-19 20:09:58 26KB Python
1