Julia 中图形模型(贝叶斯网络、马尔可夫网络等)推理算法的轻量级实现_julia_代码_下载

上传者: 38334677 | 上传时间: 2022-06-10 09:07:00 | 文件大小: 265KB | 文件类型: ZIP
这个包是Julia中概率图形模型算法的轻量级实现 特征 目前,它处理离散因子图的操作(使用 API 构建或通过从 UAI Competition 格式的文件加载),以及通过信念传播(边际、最大边际和混合边际推理)进行近似推理。 因子图是由变量节点和因子节点组成的二分图。变量节点与随机变量相关联,因子节点与域是相邻(变量)节点的直接乘积的函数相关联。在最简单的离散情况下,因子节点与表示函数的多维数组(因子)相关联。

文件下载

资源详情

[{"title":"( 28 个子文件 265KB ) Julia 中图形模型(贝叶斯网络、马尔可夫网络等)推理算法的轻量级实现_julia_代码_下载","children":[{"title":"GraphicalModels.jl-master","children":[{"title":".gitignore <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"ci.yml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"CompatHelper.yml <span style='color:#111;'> 370B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"test","children":[{"title":"example.uai <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"testloadfg.jl <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"markov.uai <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":"testspbp.jl <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false},{"title":"testhbp.jl <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"runtests.jl <span style='color:#111;'> 261B </span>","children":null,"spread":false},{"title":"testms.jl <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"Project.toml <span style='color:#111;'> 53B </span>","children":null,"spread":false}],"spread":true},{"title":".vscode","children":[{"title":"launch.json <span style='color:#111;'> 554B </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"src","children":[{"title":"index.md <span style='color:#111;'> 125B </span>","children":null,"spread":false}],"spread":true},{"title":"Project.toml <span style='color:#111;'> 116B </span>","children":null,"spread":false},{"title":"make.jl <span style='color:#111;'> 556B </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"Inference","children":[{"title":"MixedProduct.jl <span style='color:#111;'> 8.53KB </span>","children":null,"spread":false},{"title":"MessagePassing.jl <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"MaxSum.jl <span style='color:#111;'> 5.63KB </span>","children":null,"spread":false},{"title":"SumProduct.jl <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"GraphicalModels.jl <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"Models","children":[{"title":"FactorGraphs.jl <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"Variables.jl <span style='color:#111;'> 422B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"example","children":[{"title":"nltcs.query <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"nltcs.evid <span style='color:#111;'> 69B </span>","children":null,"spread":false},{"title":"nltcs.uai <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"example.jl <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"Project.toml <span style='color:#111;'> 300B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明