分享课程——深度学习-TensorRT模型部署实战,2022年4月新课,完整版视频教程下载,附代码、课件。
本课程划分为四部分:
第一部分精简CUDA-驱动API:学习CUDA驱动API的使用,错误处理方法,上下文管理方法,了解驱动API所处位置,CUDA的开发习惯。
第二部分精简CUDA-运行时API:学习CUDA运行时API的使用,力求精简,力求够用,学会编写核函数加速模型预处理(仿射变换),学习yolov5的后处理加速方法,共享内存的使用。
第三部分tensorRT基础:学习tensorRT的模型编译、推理流程,onnx解析器的使用,学习onnx的结构和编辑修改方法,学习int8量化,插件开发流程,简化的插件开发方法,学习动态shape的应用。
第四部分tensorRT高级:以项目驱动,学习大量具体的项目案例(分类器、目标检测、姿态检测、场景分割、道路分割、深度估计、车道线检测、huggingface、insightface、mmdetection、onnxruntime、openvino),学习针对深度学习需要的封装技术、多线程技术、框架设计技术。
1