内容概要:该文档名为《藏文停用词.txt》,主要收录了大量藏文字符和词汇,这些词汇在藏语文本处理中通常被视为停用词。停用词是指在文本分析或信息检索过程中需要过滤掉的常见词汇,它们虽然频繁出现但对语义贡献较小。文档中的内容包括数字、标点符号、助词、语气词、连词等多种类型的藏文符号和词汇,旨在为藏语文本处理提供基础数据支持。; 适合人群:从事藏语文本处理、自然语言处理研究的相关人员,以及对藏文语言学感兴趣的学者。; 使用场景及目标:①作为藏文文本分类、情感分析、信息检索等任务的数据预处理阶段的参考依据;②帮助研究人员更好地理解和处理藏文文本,提高文本处理的准确性和效率。; 其他说明:此文档以纯文本形式呈现,方便直接读取和使用。在实际应用中,可以根据具体需求对停用词表进行调整和优化。
2025-06-20 14:54:11 4KB 文本处理 自然语言处理
1
内容概要:本文档介绍了《自然语言处理》课程设计的四个实验,涵盖了文本聚类、文本分类、文本情感分析和个性化新闻推荐。实验一通过经典机器学习方法对新闻数据进行文本聚类,使用TF-IDF和KMeans算法,分析了文本数据的预处理、特征提取和模型评估。实验二基于经典机器学习模型(SVM、K近邻、随机森林)对新闻进行分类,通过数据清洗、可视化、文本预处理、特征向量化和模型选择,实现了对新闻内容的精准分类。实验三利用深度学习方法(TextCNN、TextRNN、TextLSTM)对天问一号事件的Bilibili评论进行情感分析,通过数据探索、文本预处理、模型构建与评估,揭示了用户对航天事件的情感倾向。实验四基于浏览记录实现个性化新闻推荐,通过数据探索、预处理、构建物品相似度矩阵,实现了基于物品的协同过滤推荐。 适合人群:具备一定编程基础,对自然语言处理和机器学习感兴趣的高校学生或初入职场的研发人员。 使用场景及目标:①理解文本聚类、分类、情感分析和个性化推荐的基本原理和实现方法;②掌握文本数据的预处理、特征提取和模型选择技巧;③熟悉经典机器学习和深度学习在自然语言处理中的应用。 其他说明:本文档详细展示了每个实验的具体步骤、代码实现和运行结果,帮助读者全面了解自然语言处理的实践过程。建议读者结合实际项目需求,灵活应用所学知识,逐步提升对自然语言处理技术的理解和应用能力。
1
自然语言处理是计算机科学和人工智能领域的研究热点,它涉及让计算机能够理解、解释和生成人类语言的各种技术。在自然语言处理的众多任务中,机器翻译是一个具有代表性的应用,它允许不同语言的人们能够跨越语言障碍进行交流。近年来,基于Transformer架构的模型在机器翻译领域取得了革命性的进步。Transformer模型由于其并行化能力强、训练效率高、处理长距离依赖的优越性,已经成为当前机器翻译的主流技术。 本案例的核心是一个Transformer模型的实际应用,展示了如何使用该模型进行翻译任务。通过具体文件的名称,我们可以推测出案例中包含的内容和结构。首先是“transformer_mytest.ipynb”,这应该是一个Jupyter Notebook文件,通常用于编写和执行可重复的数据处理和分析任务。在这个文件中,用户可能会看到Transformer模型的实例化、训练、评估以及翻译过程的演示代码。 “model.py”文件很可能是包含Transformer模型结构定义的Python脚本。在这个文件中,我们可能会找到构成Transformer模型的各个组件,如编码器层、解码器层、多头自注意力机制、位置编码等。此外,还包括模型的前向传播逻辑,以及在给定输入序列时输出翻译结果的方法。 “tokenizer.py”文件应该是负责处理和转换文本数据的部分,它包含了将原始文本分词、编码为模型可以处理的数字序列的代码。分词器是自然语言处理中不可或缺的一环,它直接影响到模型性能的好坏。分词器会读取词汇表,将单词或字符映射到相应的索引,并为模型提供必要的语言学信息。 “utils.py”文件通常包含了辅助功能的实现。在Transformer翻译任务中,这些功能可能包括但不限于数据预处理、后处理、训练辅助函数、性能评估指标等。这些工具函数是为了简化主程序的编写,提高代码的可重用性和可读性。 “main.py”是程序的入口点,它将所有的组件整合到一起,并协调整个翻译任务的执行。在这个文件中,我们可能会看到数据加载、模型训练、翻译测试以及结果输出的主逻辑。 “dataloader.py”文件则负责数据的加载和批处理。在机器学习和深度学习任务中,数据加载器负责将数据分为批次,以便模型进行批量学习。它能够高效地从数据集中读取数据,并将其转换为模型所需的格式。 “data.txt”文件可能包含了用于训练和测试模型的原始数据。在翻译任务中,数据集通常由一系列成对的句子组成,包含源语言文本和目标语言文本。数据质量直接影响模型训练效果,因此需要经过仔细的清洗和预处理。 整个案例的实现依赖于深度学习框架,如TensorFlow或PyTorch,这些框架提供了构建神经网络所需的工具和接口。通过实际操作这些文件,用户可以了解如何搭建一个基于Transformer的翻译模型,包括模型的训练、验证、测试以及后续的优化和调参。 这个案例向我们展示了一个完整的Transformer翻译任务的实现过程,从模型的定义、数据的处理,到最终的训练和评估。通过这些文件的结构和功能,我们可以了解到机器翻译任务的复杂性和深度学习在其中所发挥的关键作用。
2025-06-13 16:23:05 768KB
1
混凝土徐变对结构应力、变形的影响较大,进行准确的结构分析必须考虑混凝土徐变。按龄期调整的方法对混凝土徐变计算有效模量理论进行修正,提出等效弹性模量计算公式。运用大型通用有限元软件ANSYS参数化程序设计语言APDL编写命令,在每一时段赋予材料对应等效弹性模量并计算混凝土结构的徐变,把徐变问题化为相当的弹性问题。并通过算例验证此方法在实际工程应用中的有效性。 ### 基于等效模量法与ANSYS计算混凝土徐变 #### 一、引言 混凝土作为一种广泛应用的建筑材料,在桥梁、大坝、高楼等各类结构中扮演着至关重要的角色。然而,随着时间的推移,混凝土在承受持续荷载的情况下会发生徐变现象,即在恒定应力作用下其应变会逐渐增加。这种现象对于结构的安全性和耐久性有着重要的影响。因此,准确地计算和预测混凝土的徐变特性对于确保结构设计的准确性至关重要。 #### 二、混凝土徐变的概念及影响 混凝土徐变是指在长时间荷载作用下,混凝土结构的变形会随时间逐渐增加的现象。这种变形不仅会影响结构的稳定性,还会导致预应力损失等问题。徐变对结构的影响可以分为有利和不利两个方面: - **有利方面**:例如,徐变有助于减少结构中的拉应力,从而减轻开裂的风险。 - **不利方面**:徐变可能导致结构变形超出允许范围,影响结构的整体稳定性和使用寿命。 #### 三、有效模量法及其修正 为了更准确地计算混凝土徐变,研究者们提出了多种计算方法,其中有效模量法是一种较为常用且简单的方法。这种方法通过调整混凝土的弹性模量来模拟徐变效应,将复杂的徐变问题简化为相对简单的弹性问题。具体来说,有效模量法假设混凝土的徐变可以被等效为一个随时间变化的弹性模量。但是,原始的有效模量法并没有考虑到混凝土的龄期对其徐变性能的影响,这使得计算结果在某些情况下不够准确。 为了解决这一问题,研究人员提出了**龄期调整有效模量法**。这种方法通过对混凝土的有效模量进行调整,考虑了混凝土随时间老化的因素,提高了计算的精度。该方法引入了一个**老化系数**,用来反映混凝土随时间的老化程度对徐变性能的影响。通过这种方法,可以更准确地模拟不同龄期混凝土的徐变行为。 #### 四、ANSYS在混凝土徐变计算中的应用 ANSYS是一款功能强大的有限元分析软件,广泛应用于各种工程领域。在混凝土徐变的计算中,ANSYS提供了一种精确而高效的解决方案。通过使用ANSYS的参数化程序设计语言APDL,研究人员能够编写特定的命令脚本,使软件能够自动根据不同的时间段赋予混凝土材料对应的等效弹性模量。这样一来,就能够在每个计算步骤中准确地模拟混凝土徐变的过程。 具体步骤包括: 1. **定义材料属性**:根据混凝土的物理性质和老化模型定义材料的基本属性。 2. **编写APDL命令脚本**:编写专门的APDL脚本来实现对混凝土材料属性的动态调整,这些脚本能够根据不同的时间段自动更新混凝土的有效模量。 3. **进行有限元分析**:利用ANSYS的有限元求解器,结合动态调整的有效模量进行徐变分析。 #### 五、算例验证 为了验证基于等效模量法与ANSYS计算混凝土徐变的有效性,文中还提供了具体的算例分析。通过与实验数据或其他已知结果的比较,验证了该方法在实际工程应用中的准确性和可靠性。这些算例不仅展示了方法的有效性,也为后续的研究提供了宝贵的数据支持。 #### 六、结论 基于等效模量法与ANSYS相结合的方法为混凝土徐变的计算提供了一个实用而有效的工具。通过合理调整混凝土的有效模量,并利用ANSYS的强大功能,可以更加精确地模拟混凝土在长时间荷载下的徐变行为,这对于提高结构设计的准确性具有重要意义。未来的研究可以进一步探索更复杂的老化模型以及与其他计算方法的结合,以期获得更加全面和深入的理解。
2025-06-13 14:26:09 944KB 自然科学 论文
1
随着物联网、云计算、移动互联网的迅猛发展,大数据(Big Data)吸引了越来越多的关注,正成为信息社会的重要财富,同时也给数据的处理与管理带来了巨大挑战.首先从大数据概念入手,阐述了大数据的来源、主要挑战、关键技术、大数据处理工具和应用实例等,并对比了大数据与云计算、物联网、移动互联网等技术之间关系,然后剖析了大数据核心技术、大数据企业解决方案,讨论了目前大数据应用实例,最后归纳总结了大数据发展趋势.旨在为了解大数据当前发展状况、关键技术以及科学地进行大数据分析与处理提供参考.
2025-06-11 15:57:10 2.02MB 自然科学 论文
1
标注方式上: RefCOCOg采用的是非交互式标注法,选定区域请人标注,再请另外一批人根据标注的expression选择对应的region; RefCOCO和RefCOCO+采用的是双人游戏 (Refer it game)的方式. 数据划分方式上: RefCOCO和RefCOCO+包含train, val, testA, testB。testA的图片包含多个人;testB的图片包含多个除人之外的物体。同一个图片的object-expression样本对要么全在训练集,要么全在验证\测试集。 RefCOCOg包含train, val, test。是按照object进行划分的,同一个图片的object-expression样本对集合可能会在训练集一部分,在验证\测试集另一部分。 图片选择上: RefCOCO:图像包含同一类别的多个物体。 RefCOCO+:图像包含同一类别的多个物体,并且expression不能有绝对位置(e.g., left)的词。 RefCOCOg:图像包含同一类别的2-4个物体,覆盖面积超过图片面积的5%
2025-06-11 14:21:27 43.5MB 数据集
1
利用LandsatTM/ETM+数据进行南昌市地表温度反演,得出1989年和2000年2个时相的南昌市热岛强度等级分布特征,结合下垫面土地覆盖类型图.选取样区对比分析了地表温度空间分布.结果表明:南昌市存在比较明显的热岛效应,主城区的地表温度由城区中心向近郊、远郊逐渐降低,城市地表温度与下垫面的性质紧密相关.研究结果对于改善南昌城市生态环境、减缓城市热岛效应具有重要的参考价值.
2025-06-08 23:08:21 278KB 自然科学 论文
1
利用层次分析法建立了一个公务员招聘的数学优化模型.首先将面试成绩、期望成绩与笔试成绩转化为相应的权重,再充分考虑应聘人员的志愿,最后建立双向选择的权重计算模型,并在处理过程中抓住应聘人员的实际权重与各部门期望权重的贴近度,运用整数规划确定出各种条件下的最优分配方案.对一般情况即Ⅳ个应聘人员M个用人单位时做了合理的论证,以达到该模型在运用中的推广.
2025-06-07 16:21:20 204KB 自然科学 论文
1
### 南邮自然语言处理实验三知识点解析 #### 一、实验概述 南京邮电大学的这份实验报告针对的是自然语言处理(NLP)领域的三项基本任务:词性标注(Part-of-Speech Tagging, POS)、命名实体识别(Named Entity Recognition, NER)以及信息抽取(Information Extraction)。这些技术在文本挖掘、机器翻译、问答系统等领域有着广泛的应用。 #### 二、实验目的 1. **词性标注**:掌握如何对文本中的词语进行词性标注。 2. **命名实体识别**:学会识别文本中的特定实体,如人名、地名等。 3. **信息抽取**:理解如何从非结构化或半结构化的文本中提取结构化信息。 #### 三、实验环境 - **硬件**: 微型计算机 - **软件**: Windows操作系统、Python3.7或3.8 #### 四、实验原理与内容 本节将详细介绍实验中涉及到的主要知识点。 ##### 1. 词性标注 词性标注是自然语言处理中的基础任务之一,其目标是对句子中的每个词赋予一个表示其语法功能的标记。 - **基于隐马模型的词性标注** - **隐马尔可夫模型**(Hidden Markov Model, HMM)是一种统计模型,常用于序列标注问题,如语音识别、手写识别、生物信息学中的序列分析等。 - 在词性标注中,HMM假设当前词的词性仅依赖于前一个词的词性,这被称为一阶HMM;而二阶HMM则考虑前两个词的词性。 - **代码示例**: ```python from pyhanlp import * from test07 import ensure_data HMMPOSTagger = JClass('com.hankcs.hanlp.model.hmm.HMMPOSTagger') AbstractLexicalAnalyzer = JClass('com.hankcs.hanlp.tokenizer.lexical.AbstractLexicalAnalyzer') PerceptronSegmenter = JClass('com.hankcs.hanlp.model.perceptron.PerceptronSegmenter') FirstOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.FirstOrderHiddenMarkovModel') SecondOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.SecondOrderHiddenMarkovModel') def train_hmm_pos(corpus, model): tagger = HMMPOSTagger(model) # 创建词性标注器 tagger.train(corpus) # 训练 analyzer = AbstractLexicalAnalyzer(PerceptronSegmenter(), tagger) # 构造词法分析器 text = "新华社北京 5 月 29 日电(记者严赋憬、杨淑君)记者从国家林草局获悉,在有关部门和京沪两地各方的高度重视和共同努力下,大熊猫“丫丫”顺利通过隔离检疫,乘坐包机平安抵达北京,于 5 月 29 日 0 时 43 分回到北京动物园大熊猫馆。目前,“丫丫”健康状况稳定。" print(analyzer.analyze(text)) # 分词+词性标注 return tagger ``` **结果**:新华/nt 社/v 北京/v 5 月/v 29 日/v 电/v (/v 记者/v 严赋憬/v 、/v 杨淑君/v )/v 记者/v 从/v 国家/v 林草局/v 获悉/v ,/v 在/v 有关/v 部门/v 和/v 京/v 沪/v 两地/v 各方/v 的/v 高度重视/ - **分析解读**: - `nt` 表示地名; - `v` 表示动词; - 其他标记根据上下文可以推断出来。 ##### 2. 命名实体识别 命名实体识别旨在从文本中识别出具有特定意义的实体,如人名、地名、组织机构名等,并将其分类。 - **命名实体的类别**: - 人名(Person) - 地名(Location) - 组织机构名(Organization) - **技术实现**: - 使用训练好的模型对文本进行识别。 - **应用场景**: - 新闻报道分析 - 社交媒体监控 - 情感分析 ##### 3. 信息抽取 信息抽取是从文本中自动抽取结构化信息的过程,它可以帮助我们快速了解文本的关键信息。 - **信息抽取的步骤**: 1. 文本预处理:分词、词性标注、命名实体识别等。 2. 特征提取:基于规则的方法、基于机器学习的方法等。 3. 关系抽取:识别实体之间的关系。 - **应用场景**: - 数据库填充 - 自动问答系统 - 事件检测 #### 五、总结 本次实验通过实际操作加深了学生对词性标注、命名实体识别以及信息抽取这三个NLP领域关键技术的理解。通过使用Python编程语言和相关的NLP工具库,学生不仅掌握了理论知识,还提高了实践能力。这些技能对于从事自然语言处理研究和开发的人员来说至关重要。
2025-06-05 15:02:10 230KB 自然语言处理
1
介绍了Alpha稳定分布和其分数低阶矩(FLOM),设计了一种用于2-D波达方向(DOA)估计的阵列配置,并基于相 控分数低阶矩(PFLOM)提出了2-DDOA算法。由接收信号的PFLOM协方差矩阵得到有用信号的PFLOM协方差矩阵,对其进行特征值分解,并利用最小二乘或总体最小二乘方法就可得到DOA。最后,比较了基于传统协方差、符号协方差、FLOM和PFLOM的旋转不变技术估计信号参数算法。仿真结果表明,该算法具有鲁棒性和较小的角度估计偏差及均方误差。
2025-06-03 22:34:20 327KB 自然科学 论文
1