本人和同行讨论也参考了一些资料,蛇形走线作用大致如下:希望大家补充纠正。 PCB上的任何一条走线在通过高频信号的情况下都会对该信号造成时延时,蛇形走线的主要作用是补偿“同一组相关”信号线中延时较小的部分,这些部分通常是没有或比其它信号少通过另外的逻辑处理;最典型的就是时钟线,通常它不需经过任何其它逻辑处理,因而其延时会小于其它相关信号。 高速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据),一般要求延迟差不超过1/4时钟周期,单位长度的线延迟差也是固定的,延迟跟线宽,线长,铜厚,板层结构有关,但线过长会增大分布电容和分布电感,使信号质量,所以时钟IC引脚一般都接RC端接,但蛇形走线并非起电感的作用,相反的,电感会使信号中的上升元中的高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽的两倍,信号的上升时间越小就越易受分布电容和分布电感的影响. 因为应用场合不同具不同的作用,如果蛇形走线在电脑板中出现,其主要起到一个滤波电感的作用,提高电路的抗干扰能力,电脑主机板中的蛇形走线,主要
2024-03-02 10:28:23 49KB 硬件设计
1
很多应用都需要差分信号,以获得较高的信噪比,提高对共模噪声的抑制能力,并获得较低的二次谐波失真,例如驱动调制解调器ADC、通过双绞线电缆传输信号,以及高保真音频信号的调整等。这就要求有一种可以将单端信号转换为差分信号的电路,即单端-差分转换器。 对很多应用而言,AD8476内置的小功率全差分精密放大器就足够完成单端-差分的转换功能。但对于需要更高性能的应用,可以将一只OP1177精密运放与AD8476相级联,如图所示。这种单端-差分转换器有高的输入阻抗、(最大)2nA输入偏移电流及相对输入端的(最大)60μV偏移电压和(最大)0.7μV/℃电压偏移。 图1 : 调节R F与R G的比值,就可以设定这个单端-差分转换器。 图1中电路是一种双放大器反馈结构,其中运放决定了电路的精度以及噪声性能,而差分放大器则扮演了单端-差分转换功能。这个反馈结构抑制了AD8476的误差,包括噪声、失真、偏移、漂移,它用运放的大开环增益替代了AD8476内部的运放反馈回路。本质上,这个结构是采用运放针对输入端的开环增益,衰减了AD8476的误差。 图中的外接电阻R F和R G设定单端-差分放大器
2024-03-02 10:27:13 104KB 单端信号 差分转换器 基础知识
1
P沟MOS晶体管 P沟MOS晶体管金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。 P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS
2024-03-02 10:24:54 93KB P沟MOS 模拟电路
1
微软停止IE支持已有一年多了,可仍然有很多企业办公需要IE浏览器的支持,微软也只是将IE浏览器强制跳转到Edge罢了,所以对抗微软“禁用”IE的斗争一直在持续着,在这期间有了各种大佬写的启用IE浏览器的修复工具,本人在使用这些工具时发现存在着各种“不足之处”,比如:1、Win10系统下修复仅管理员可以使用,其他用户账号或新建用户账号打开IE时存在假死闪退的情况;2、修复后系统更新补丁、Edge更新重新安装后都需要再次手动进行修复。所以,本工具针对以上“不足之处”进行彻底修复,只要运行一次即可【彻底】【永久】修复。 程序特色: 1、支持修复简体中文(zh-CN)、繁體中文(zh-TW)、英文(en-US) 版本的Windows10、Windows11系统。 2、修复Internet 属性界面的选项卡内容完整显示。 3、修复后本机上的所有用户账号(包括新建用户账号)都能正常使用。 4、支持系统更新、Edge更新后自动修复:开机自动检测是否需要进行修复,如需要修复将自动执行修复。 5、支持一键还原回到原系统初始化状态。
2024-02-29 18:17:59 19.29MB windows Edge ie11
1
披萨食品简实FLASH模板 简实模板 食品模板 html模板 披萨模板
2024-02-29 10:10:04 10.21MB 网页模版
1
今天学习机器人-SPS程序-简析,大家一起看下吧。
2024-02-27 13:16:24 21KB 机器人 技术应用
1
为快速响应客户需求和提高产品定制效率,通过分析产品设计过程的特点,结合粗糙集理论和神经网络方法各自的优势,提出一种融合粗糙集和神经网络的产品敏捷定制设计新方法,将粗糙集和神经网络方法有机集成应用于产品设计过程。该方法中,运用粗糙集对设计要求进行约简,提炼有效的决策条件;在此基础上,采用神经网络方法构建不同设计阶段的设计要求与其对应的产品结构间的网络模型,快速确定产品结构形式。并将该方法成功应用于某卷板机的总体方案定制设计过程。这种方法为实现产品敏捷定制开发提供了一种新的解决思路和技术手段。
1
钳位二极管作用 1、当二极管负极接地时,则正极端电路的电位比地高时,二极管会导通将其电位拉下来,即正极端电路被钳位零电位或零电位以下(忽略管压降) 2、当二极管正极接地时,则负极端电路的电位比地高时,二极管会截止,其电位将不会受二极管的任何作用 3、在钳位电路中,二极管负极接+5v,则正极端电路被钳位+5V电位以下(不能忽略管压降) 钳位二极管工作原理 二极管钳位保护电路是指由两个二极管反向串联组成的,一次只能有一个二极管导通,而另一个处于截止状态,那么它的正反向压降就会被钳制在二极管正向导通压降0.5-0.7以下,从而起到保护电路的目的。 钳位电路的作用是将周期性变化的波形的顶部或底部保持在某一确定的直流电平上。常见的二极管钳位电路。设输入信号,在零时刻,uO(0+)=+E,uO产生一个幅值为E的正跳变。此后在0~t1间,二极管D导通,电容C充电电流很大,uC很快等于E,致使uO=0。在t1时刻,ui(t1)=0,uO又发生幅值为-E的跳变,在t1~t2期间,D截止,充电电容C只能通过R放电,通常,R取值很大,所以uC下降很慢,uO变化也很小。在t1时刻uI(t2\uff09=
2024-02-23 22:02:19 42KB 工作原理 模拟电路
软件开发设计:PHP、QT、应用软件开发、系统软件开发、移动应用开发、网站开发C++、Java、python、web、C#等语言的项目开发与学习资料 硬件与设备:单片机、EDA、proteus、RTOS、包括计算机硬件、服务器、网络设备、存储设备、移动设备等 操作系统:LInux、IOS、树莓派、安卓开发、微机操作系统、网络操作系统、分布式操作系统等。此外,还有嵌入式操作系统、智能操作系统等。 网络与通信:数据传输、信号处理、网络协议、网络与通信硬件、网络安全网络与通信是一个非常广泛的领域,它涉及到计算机科学、电子工程、数学等多个学科的知识。 云计算与大数据:数据集、包括云计算平台、大数据分析、人工智能、机器学习等,云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。
2024-02-12 11:58:16 1.47MB 毕业设计 课程设计 项目开发 移动开发
1
#ScreenShot 个人博客: sqk.pub
2024-01-24 21:23:15 332KB Java
1