动力电池SOC估算复杂方法综述_1000027364336311.pdf
基于深度强化学习卡尔曼滤波锂离子电池 SOC 估计.pdf
2021-12-04 11:01:36 739KB 算法 互联网 资源
针对全钒液流电池的荷电状态(SOC)估计精度低、估计成本较高等问题,提出一种基于递推最小二乘算法(RLS)与扩展卡尔曼滤波算法(EKF)相结合的估计方法.该方法通过RLS算法辨识所建立的钒电池数学模型参数,通过EKF算法估计钒电池的SOC,将二者结合实现电池参数发生变化时准确估计钒电池的SOC.以5kW/ 30kWh的钒电池为对象,应用所提出的算法实现钒电池的SOC估计.结果表明,该算法可以准确估计钒电池的SOC,且可节省额外增加单片检测电池测量SOC的费用.
1
基于PI观测器的电池SOC观测simulink仿真模型,在设定的曲线或者NEDC等工况下放电曲线,SOC观测准确,仿真效果很好,包含matlab 17a 和18b版本。
2021-10-26 18:02:55 1.84MB 电池SOC的PI观测仿真模型
动力电池SOC和SOH估计是动力电池管理系统的核心功能之一,精确的SOC和SOH估计可以保障动力电池系统安全可靠地工作,优化动力电池系统,并为电动汽车的能量管理和安全管理等提供依据。然而,动力电池具有可测参数量有限且特性耦合、即用即衰、强时变、非线性等特征,车载环境应用又面临串并联成组非均一复杂系统、全工况(宽倍率充放电)、全气候(-30~45℃温度范围)应用需求,高精度、强鲁棒性的动力电池SOC和SOH估计极具挑战,一直是行业技术攻关的难点和国际学术界研究的前沿热点。本章将系统阐述动力电池SOC和SOH估计的基础理论和应用,并讨论静态容量已知和动态容量在线估计条件下动力电池SOC估计性能,以及SOH与SOC协同估计的必要性,并提供以便BMS现实应用的详细算法流程。
2021-10-20 17:15:23 734KB soc soh 动力 电池
1
行业资料-电子功用-一种混合动力电池SOC自适应控制方法
2021-10-12 18:07:40 378KB
1
锂电池BMS开发源码,BMS功能开发,SOC计算,锂电池保护等
2021-09-28 15:00:11 18.04MB S32DS开发BMS 电池 电池SOC SOC
针对电动汽车应用的50AH磷酸铁锂电池荷电状态(state of charge,SOC)估算不准的难题,在原有BP神经网络的基础上引入改进的PS0算法加以优化,优化了BP神经网络的权值和阈值,并把优化后的网络用于SOC预测,减小了SOC估算的误差.本文以50AH的磷酸铁锂电池为研究对象,首先在粒子群算法(particle swarm optimization,PSO)中引入了变异算子改进了PS0搜索精度较低、后期迭代效率不高等缺点,然后通过实验分析了电压、电流、温度3个主要参数与SOC的关系,利用放电实验
2021-09-27 09:41:00 128KB 自然科学 论文
1
采用自适应卡尔曼滤波方法,基于锂离子动力电池的等效电路模型,在未知干扰噪声环境下,在线估计电动汽车锂离子动力电池荷电状态(SOC)。
2021-09-25 16:42:23 372KB 自适应 卡尔曼滤波 SOC估计
1
基于无迹卡尔曼滤波(UKF)的锂电池荷电状态(SOC)估计,里面包含自己所做实验得到的锂电池系统参数(二阶RC等效电路模型各参数),并且通过UDDS工况仿真验证UKF算法的精度。需要各种误差图,可自行修改代码。
1