针对电动汽车应用的50AH磷酸铁锂电池荷电状态(state of charge,SOC)估算不准的难题,在原有BP神经网络的基础上引入改进的PS0算法加以优化,优化了BP神经网络的权值和阈值,并把优化后的网络用于SOC预测,减小了SOC估算的误差.本文以50AH的磷酸铁锂电池为研究对象,首先在粒子群算法(particle swarm optimization,PSO)中引入了变异算子改进了PS0搜索精度较低、后期迭代效率不高等缺点,然后通过实验分析了电压、电流、温度3个主要参数与SOC的关系,利用放电实验