内容概要:本文详细介绍了使用MATLAB进行多水下航行器(AUV)协同定位的仿真研究。首先构建了一个简化的双AUV场景,其中一个作为Leader配备高精度惯性导航系统,另一个作为Follower仅有低成本传感器。通过引入扩展卡尔曼滤波(EKF),实现了基于相对距离测量的状态估计优化。文中展示了具体的MATLAB代码实现,包括系统参数初始化、运动模型建立、相对位置测量以及EKF更新步骤。实验结果表明,经过多次协同观测后,Follower的位置误差显著减少。此外,还讨论了实际应用中可能遇到的问题如通信延迟、数据丢失等,并提出了相应的解决方案。最后展望了未来的研究方向,如加入更多AUV形成观测闭环、改进通信协议等。 适合人群:从事水下机器人研究的技术人员、高校相关专业师生、对水下导航感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解水下机器人协同定位原理和技术实现的研究人员;旨在帮助读者掌握EKF在水下定位中的应用,提高多AUV系统的定位精度。 其他说明:文中提供了完整的MATLAB代码片段,便于读者动手实践;强调了理论与实践相结合的学习方式,鼓励读者尝试不同的参数配置以探索最佳性能。
2025-05-27 09:44:44 1.06MB MATLAB 传感器融合
1
内容概要:本文介绍了利用遗忘因子递推最小二乘(FFRLS)和扩展卡尔曼滤波(EKF)进行锂电池荷电状态(SOC)联合估计的方法。首先,FFRLS用于在线辨识电池模型参数,如极化电阻和电容,通过引入遗忘因子使旧数据权重逐渐衰减,从而提高参数辨识的准确性。接着,EKF用于处理SOC的非线性估计,结合辨识得到的参数,通过状态预测和更新步骤实现精确的SOC估计。文中详细解释了算法的具体实现步骤,包括矩阵运算、雅可比矩阵计算以及参数初始化等问题。此外,还讨论了低温环境下算法的表现优化措施,如动态调整遗忘因子和加入参数变化率约束。 适合人群:从事电池管理系统研究和开发的技术人员,尤其是对锂电池SOC估计感兴趣的工程师和研究人员。 使用场景及目标:适用于需要精确估计锂电池SOC的应用场景,如电动汽车、储能系统等。主要目标是提高SOC估计的精度,减少误差,特别是在极端温度条件下。 其他说明:文中提供了详细的代码实现和参考文献,帮助读者更好地理解和应用该算法。建议读者结合实际数据进行调试和验证,确保算法的有效性和稳定性。
2025-05-17 13:37:38 1.22MB
1
内容概要:本文详细介绍了如何在Matlab Simulink中构建锂电池的2-RC等效电路模型,并利用扩展卡尔曼滤波(EKF)进行SOC(State of Charge)估算。首先,文章展示了如何使用Simulink中的电气元件搭建2-RC模型的基本结构,包括电压源、电阻和电容的连接方式。接着,深入探讨了模型参数的设定与辨识,特别是OCV(SOC)曲线的拟合及其在EKF中的应用。此外,文章还讨论了仿真过程中可能出现的问题及解决方案,如代数环问题、参数优化以及温度对模型参数的影响。最后,通过脉冲放电实验验证了模型的有效性和准确性。 适合人群:从事电池管理系统(BMS)开发的技术人员,尤其是对锂电池SOC估算感兴趣的科研人员和工程师。 使用场景及目标:适用于需要精确估算锂电池剩余电量的应用场合,如电动汽车、便携式电子设备等。目标是提高SOC估算的精度,确保系统的可靠运行。 其他说明:文中提供了详细的代码片段和参数设置指南,帮助读者更好地理解和复现模型。同时,强调了实际应用中需要注意的细节,如温度补偿和参数优化,以提升模型的鲁棒性和实用性。
2025-04-20 19:12:07 179KB Matlab Simulink EKF 参数辨识
1
本文深入探讨了电力系统动态状态估计的两种方法:扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。文章首先介绍了这两种滤波技术的基本原理和算法流程,接着通过实例分析和数值模拟,比较了它们在电力系统状态估计中的性能差异。此外,文章还讨论了如何根据电力系统的具体特点和需求,选择最合适的滤波方法。本文旨在为电力工程师和研究人员提供有关动态状态估计的实用指南,并推动相关领域的进一步研究和发展。 适用人群:电力工程师、控制系统研究人员、卡尔曼滤波技术爱好者 使用场景:电力系统状态监测、故障诊断、系统控制与优化 电力系统、动态状态估计、扩展卡尔曼滤波、无迹卡尔曼滤波
2024-06-18 09:47:32 8.82MB matlab 无迹卡尔曼滤波
1
永磁同步电机无感FOC(扩展卡尔曼滤波EKF位置观测控制)simulink仿真模型,扩展卡尔曼滤波EKF原理分析,永磁同步电机无感FOC扩展卡尔曼滤波EKF位置观测控制仿真模型搭建说明: 永磁同步电机无感FOC(扩展卡尔曼滤波EKF位置观测控制):https://blog.csdn.net/qq_28149763/article/details/137652329?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22137652329%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-05-06 15:33:04 74KB 电机控制 simulink PMSM
1
本篇为组合导航扩展卡尔曼滤波 C++ 代码实现。 注:本例所用传感器有激光雷达传感器,雷达传感器 /*扩展卡尔曼滤波器*/ #include #include #include #include #include #include #include #include #define ROWS 1224 #define COLS 8 using namespace std; using namespace Eigen; int main(){ // ******************************导入数据**************************************
2024-03-14 20:46:46 154KB include 卡尔曼滤波
1
matlab实现CTRV模型的扩展卡尔曼滤波的代码,里面有详细解释和如何运行代码。
2024-02-12 18:55:59 4KB matlab
1
Maltlab 程序,直观显示了三种滤波方法的估计值与真实值的误差,以及PF方法的置信区间。Maltlab 程序,直观显示了三种滤波方法的估计值与真实值的误差,以及PF方法的置信区间。
2023-12-02 12:59:41 7KB
1
永磁同步电机pmsm无感foc控制,观测器采用扩展卡尔曼滤波器ekf,代码运行无错误,支持无感启动,代码移植性强,可以移植到国产mcu上.
2023-11-12 08:17:22 141KB
1
项目中包括锂电池模型建立、参数辨识与验证、SOC估算采用扩展卡尔曼滤波(EKF),使用了两种方式实现: 1. Simulinks(EKF only) 2. 脚本(包含EKF和UKF) 模型的输入包括电流和电压来自于HPPC(混合脉冲功率特性)测试的电池数据 脚本文件可以仿真在BBDST(北京公交车动态街道测试)工况和带有观测噪声的恒流工况下的锂离子电池放电过程,利用EKF UKF方法估算电池荷电状态。
2023-11-06 09:23:46 769KB
1