matlab计算psnr代码GAN_压缩 ICASSP 2020 第 45 届声学、语音和信号处理国际会议的代码。该代码用于音频压缩部分,但可以通过小的修改用于图像压缩。 抽象的 我们提出了一个统一的压缩框架,它使用生成对抗网络 (GAN) 来压缩图像和语音信号。 压缩后的信号由一个潜在向量表示,该向量被输入到一个生成器网络中,该网络被训练产生高质量的信号,最小化目标函数。 为了有效地量化压缩信号,非均匀量化的最佳潜在向量通过迭代反向传播进行识别,每次迭代执行 ADMM 优化。 我们的实验表明,所提出的算法在各种指标(包括比特率、PSNR 和基于神经网络的信号分类精度)中量化的图像和语音压缩都优于先前的信号压缩方法 引文 如果您发现此代码有用,请考虑引用: @inproceedings{liu2020unified, title={Unified Signal Compression Using Generative Adversarial Networks}, author={Liu, Bowen and Cao, Ang and Kim, Hun-Seok},\nbooktitle=
2022-06-09 11:58:36 1.91MB 系统开源
1
基于生成对抗网络的Spambase DataSet数据集缺失数据填补源码实现(python).py,详情可参考文章:https://wendy.blog.csdn.net/article/details/125072344(GAIN),利用pytorch实现
2022-06-02 21:05:17 331KB pytorch python 生成对抗网络 神经网络
1
尽管使用更快更深的卷积神经网络在单图像超分辨率的准确性和速度方面取得了突破,但一个核心问题仍然很大程度上未解决:当我们在大的升级因子上超分辨时,我们如何恢复更精细的纹理细节?基于优化的超分辨率方法的行为主要由目标函数的选择驱动。近期工作主要集中在最小化均方重建误差。由此产生的估计具有高峰值信噪比,但它们通常缺乏高频细节,并且在感知上它们不能满足在较高分辨率下预期的保真度的感觉上不满意。在本文中,我们提出了SRGAN,一种用于图像超分辨率(SR)的生成对抗网络(GAN)。据我们所知,它是第一个能够推断4倍放大因子的照片般逼真的自然图像的框架。为实现这一目标,我们提出了一种感知损失函数,它包括对抗性损失和内容丢失。对抗性损失使用鉴别器网络将我们的解决方案推向自然图像流形,该网络经过训练以区分超分辨率图像和原始照片真实图像。另外,我们使用由感知相似性驱动的内容丢失而不是像素空间中的相似性。我们的深度残留网络能够在公共基准测试中从严重下采样的图像中恢复照片般逼真的纹理。广泛的平均意见得分(MOS)测试显示使用SRGAN在感知质量方面获得了巨大的显着提升。使用SRGAN获得的MOS分数比使用任何
2022-05-24 21:05:30 156MB 超分辨率 深度学习 图像处理
1
GAN生成对抗网络入门与实战视频教程,新增Tensorflow2.0代码实现,16章完整版,提供源码和数据下载。 课程深入浅出,从深度学习(tensorflow)基础讲起,既有原理的介绍,又对实现代码做了精讲。为使课程简单易懂,代码实现全部从简,使用简洁的代码实现各种各样的GAN实例。本课程深入讲解近年来复杂分布上无监督学习方法——生成对抗网络(GAN)的原理与应用实例。
1
3dgan-chainer 3D生成对抗网络的Chainer实现。 结果 一些好的样品产生了椅子。 (50纪元) python generate_samples.py result/trained_models/Generator_50epoch.npz 要求 链接器(2.0.1) 科学的 scikit图像 h5py pip install scipy scikit-image h5py 可选的 如果要绘制体素,则需要 。 截至2017年10月19日,未发行版本的matplotlib仅包含功能 matplotlib 2.1.0 + 323.ge6448bafc pip install git+https://github.com/matplotlib/matplotlib 数据集 我使用了ShapeNet-v2数据集。 培训脚本支持.binbox或.h5扩展名。 描述你的数据集路径DATASET_PATH在train.py 。 .binvox 只需在ShapeNet-v2中使用.binvox文件
1
生成对抗网络(GAN)的英文电子书
2022-05-04 19:32:34 15.71MB gan
1
matlab如何敲代码此代码基于python3.0。此代码表示高光谱图像的超分辨率方法 如何使用它? 在main.py路径下打开CMD命令,然后根据训练顺序依次执行train_srresnet.sh,train_srganc.sh,test_srganc.sh。 用笔记本打开这些文件,将“ Python”之后的部分复制到CMD,然后按Enter执行。 我们从matlab中准备训练数据和测试数据,这些数据来自高光谱图像:华盛顿特区的购物中心,数据位于“数据”路径下,并且有很好的依据。 如何处理设置? 您需要设置的所有参数都在main.py中,根据您的培训需要更改变量“ Flags” 参数设置功能:(1)3DSRResnet模型:需要设置以下变量:Out_putdir模型:输出位置和文件名,默认为当前目录summary_dir:培训过程日志存储,默认情况下与output_dir相同,默认情况下位于该日志下output_dir的任务:SRResnet Batch_size:不需要忽略,默认为1倍和1张图片Num_resblock:建议小于或等于8 learning_rate:此变量是可调的,
2022-05-01 15:43:33 27KB 系统开源
1
研一机器学习作业生成对抗网络(附代码)
《GAN生成对抗网络实战(PyTorch版)》,2022最新升级版!本课程讲解GAN的基本原理和常见的各种GAN,提供数据集、代码和课件下载。
2022-04-19 17:05:41 531B pytorch 生成对抗网络 人工智能 python
1
生成对抗网络(GAN)实例 代码+数据集 很实用的代码,并且简单易学,对深度学习感兴趣的可以看看 数据集有手写图片的识别,也可以替换成自己的数据集
2022-04-19 12:05:47 11.06MB 生成对抗网络 GAN 深度学习