包含八个代码文件,包括:特征抽取,特征选择,标准化,归一化,PCA,还有一些sklearn流行数据集的使用方法,以及kaggle大赛上的一个项目的数据分析阶段
2024-05-26 12:10:34 5KB mechine lear
1
现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx
2024-05-23 21:49:15 108KB 机器学习 深度学习
基于特征匹配的全景图像拼接PPT课件.pptx
2024-05-21 15:59:32 2.16MB 专业课件
复现了文献中的仿真信号实例,严格按照文献所述的方法进行代码分析,各个步骤的结果均可视化。(不包括复现轴承实验数据)
2024-05-20 14:55:47 5KB VMD 特征提取
利用ReliefF算法对回归特征变量做特征重要性排序,实现特征选择。 通过重要性排序图,选择重要的特征变量,以期实现数据降维的目的。 程序直接替换数据就可以用,程序内有注释,方便学习和使用。 程序语言为matlab。
2024-05-13 17:26:37 265KB matlab
1
针对全卷积神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷积残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷积和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷积神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
基于对称三对角矩阵特征求解的分而治之方法,提出了一种改进的使用MPI/Cilk模型求解的混合并行实现,结合节点间数据并行和节点内多任务并行,实现了对分治算法中分治阶段和合并阶段的多任务划分和动态调度.节点内利用Cilk任务并行模型解决了线程级并行的数据依赖和饥饿等待等问题,提高了并行性;节点间通过改进合并过程中的通信流程,使组内进程间只进行互补的数据交换,降低了通信开销.数值实验体现了该混合并行算法在计算效率和扩展性方面的优势.
2024-04-30 15:00:14 860KB 并行计算 分治算法
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
自己整理的YOLO模型的各种改进文献 包括添加注意力模块 改进骨干网络 改进特征融合 改进输出层等
2024-04-28 16:41:49 186.13MB 网络 网络
1
以淮河流域及周边地区48个气象站点1961年-2010年共50年逐日降水过程为基础资料,以地理信息系统技术为数据处理平台,结合Mann-Kendall秩次相关检验、Morlet小波变换和集对分析法(SPA)等,分析淮河流域年降水量时间序列趋势性、周期性以及降水集中度、集中期、降水质心、旱涝发生频率、旱涝交替在空间上的分布特征。结果表明:①近50年来,年降水量整体呈略微减少趋势,南部地区降水增加,北部地区降水减少;②年际变化上存在27年的主周期,年内分配集中在夏季,且北部地区降水更为集中;③干旱易发区分布面
2024-04-27 01:36:34 737KB 工程技术 论文
1