深度卷积神经网络用于多波段卫星图像的语义分割 准备 从下载3频段和16频段并提取到数据文件夹 通过执行以下命令来安装需求: $ pip install -r requirements.txt 此外,您需要安装tensorflow或tensorflow-gpu 训练 $ python train.py 争论 描述 选项 --algorithm 训练算法 unet , fcn_densenet , tiramisu , pspnet --size 补丁大小 整型 --epochs 训练的纪元 整型 --batch 每批样品 整型 --channels 影像频道 3 , 8 , 16 --loss 损失函数 crossentropy , jaccard , dice , cejaccard , cedice --verbose 打印更多信息 布尔 --noaugment
2022-04-06 12:19:16 41.03MB tiramisu neural-network master-thesis tensorflow
1
基于matlab的表情识别代码CNN的面部表情识别层次委员会 基于MatConvNet的MATLAB实现 [挑战] SFEW部分的获奖者,“野外挑战中的第三次情感识别”(),2015年 [论文]“,”多模式用户界面杂志(JMUI),2016年 1.输入预处理 Forder lib1_AlignFace_NormalizeInput包括 人脸注册代码(基于多管道的对齐方式) MatConvNet工具箱的输入归一化(照明归一化,对比度增强)+输入矩阵(imdb)格式的代码 下载以下库进行人脸注册 /pipeline_modules_functions/module1_ZR_FaceDetector 请访问→下载并解压缩“ face-release1.0-basic.zip”→将解压缩的文件移至“ module1_ZR_FaceDetector” /pipeline_modules_functions/module3_INTRAFACE_LandmarkDetector 请访问→下载并解压缩“ FacialFeatureDetection&Tracking_v1.4.0.zip”→将文件移至
2022-04-05 15:46:15 134.66MB 系统开源
1
对于基于块进行立体匹配的深度学习方法而言,网络结构的设计对匹配代价的计算至关重要,同时,卷积神经网络(CNN)在图像处理时的耗时问题也亟待解决。提出一种基于“缩小型”网络的CNN立体匹配方法。利用CNN训练左右图像块的相似性,计算出立体匹配的匹配代价。其中,CNN特征提取阶段,通过对每个层增加相应的批归一化层,可以使训练使用更大的学习率,加快网络训练收敛速度。另外,网络设计中全连接层采用“逐层缩小”的形式,结合上述网络优化和损失函数改善,在保证精度的同时提高了运行速度。使用KITTI数据集对算法进行验证,实验结果证明,相比目前国内外先进方法,本文算法在精度方面有一定优势,相比部分方法,速度有较大提升。
2022-03-15 15:40:07 6.34MB 机器视觉 立体匹配 匹配代价 相似性学
1
针对低照度条件下图像降质严重的问题, 提出了一种基于深度卷积神经网络(DCNN)的低照度图像增强算法。该算法根据Retinex模型合成训练样本, 将原始低照度图像从RGB (Red Green Blue)空间转换到HSI (Hue Saturation Intensity)颜色空间, 保持色度分量和饱和度分量不变, 利用DCNN对亮度分量进行增强, 最后将HSI颜色空间转换到RGB空间, 得到最终的增强图像。实验结果表明, 与现有主流的图像增强算法相比, 所提算法不仅能够有效提升亮度和对比度, 改善过增强现象, 而且能够避免色彩失真, 主观视觉和客观评价指标均得到了进一步提高。
2022-03-14 16:29:46 13.55MB 图像处理 图像增强 Retinex模 卷积神经
1
1.使用其预训练的模型进行图像分类、人脸识别等。 2.采用GPU模式训练一个MNIST数据集合分类器 (CPU的使用/GPU的使用)
2022-03-06 11:33:54 216.95MB matconv DNN 卷积神经网络 深度学习
1
针对传统基于机器学习的流量分类方法中特征选取环节的好坏会直接影响结果精度的问题,提出一种基于卷积神经网络的流量分类算法。首先,通过对数据进行归一化处理后映射成灰度图片作为卷积神经网络的输入数据,然后,基于LeNet-5深度卷积神经网络设计适于流量分类应用的卷积层特征面及全连接层的参数,构造能够实现流量的自主特征学习的最优分类模型,从而实现网络流量的分类。所提方法可以在避免复杂显式特征提取的同时达到提高分类精度的效果。通过公开数据集和实际数据集的系列仿真实验测试结果表明,与传统分类方法相比所提算法基于改进的CNN流量分类方法不仅提高了流量分类的精度,而且减少了分类所用的时间。
1
感兴趣区域欠采样MRI重建:一种深度卷积神经网络方法
2022-02-24 18:08:08 2.32MB 研究论文
1
在实际交通环境中, 所采集到的交通标志图像质量往往受到运动模糊、背景干扰、天气条件以及拍摄视角等因素的影响, 这对交通标志自动识别的准确性、实时性和稳健性提出了很大的挑战。为此提出了改进深度卷积神经网络AlexNet的分类识别算法模型, 该模型在传统AlexNet模型基础上, 以真实场景中拍摄的交通标志图像数据集GTSRB为研究对象, 将所有卷积层的卷积核修改为3×3大小, 为了预防和减少过拟合的出现在两个全连接层后加入dropout层, 并且为了提高交通标志识别精度, 在网络模型第5层后增加两层卷积层。实验结果表明, 改进后AlexNet模型在交通标志识别方面具有一定的先进性和稳健性。
2022-01-09 14:17:41 6.51MB 图像处理 卷积神经 交通标志 改进AlexN
1
针对深度学习中ResNet深度卷积神经网络与LeNet-5模型在图像识别、文字识别和语音识别等领域广泛应用,文中对两种模型的运行机理和方式进行了详细阐述,并对两者在实际应用中的表现进行了对比与分析。首先对两种模型的结构和设计分别进行了叙述,并指出了两种模型面对不同问题的优缺点,且为工程实践提供了指导。然后基于分析进一步对两种模型进行了重建和训练,以实现更优的性能。仿真结果表明,ResNet深度卷积神经网络相比LeNet-5模型在实际应用中具有更好的效果。
1