波士顿房价问题.rar
2022-02-16 18:59:12 27KB
1
波士顿房价预测相关代码
2022-01-16 23:21:02 185KB 波士顿房屋预测案例
1
波士顿房价预测数据集
2021-12-28 15:30:50 34KB 波士顿房价预测案例
1
这是波士顿房价的数据,用于机器学习的多变量的多元线性回归问题
2021-12-13 19:02:21 34KB 波士顿房价 机器学习 源数据
1
使用Pytorch解决回归问题的一般方法配套资源
2021-12-09 15:11:41 54KB 机器学习 深度学习 python pytorch
1
训练结果数集(pdf)与源代码。 通过梯度下降优化器进行优化,尝试采用不同的学习率和训练轮数等超参数,记录训练后的损失值和W、b变量值。 提交要求: 1、至少5次不同超参数的运行结果的记录文档(word格式或者txt格式) 2、你认为最优的一次带运行结果的源代码文件(.ipynb 格式)
1
波士顿房屋价格与Pyspark 使用PySpark和MLlib建立波士顿房价预测的线性回归 Apache Spark已成为机器学习和数据科学中最常用和受支持的开源工具之一。 该项目是使用Apache Spark的spark.ml线性回归预测波士顿房价的温和介绍。 目标是提出一个模型来预测该地区给定房屋的中位数。 数据源 我们的数据来自Kaggle竞赛:波士顿郊区的房屋价值。 链接: :
2021-12-03 10:01:24 292KB JupyterNotebook
1
问题描述 给定波士顿地区一系列地区租房的价格,然后罗列出了收集到多个因素,每个因素已经是量化好。现在给定的要求是,使用一个多元线性模型去拟合这些数据,然后用于预测。 模型 price=f(x1,x2,…,xn)=∑i=1nwixi+b price = f(x_1, x_2, …, x_n) = \sum\limits_{i=1}^{n} w_i x_i + bprice=f(x1​,x2​,…,xn​)=i=1∑n​wi​xi​+b 这里没有激活函数,所以还不到神经网络的阶段。 基于Tensorflow的建模一般步骤 数据准备: 1. 筛选 2. 分类 3. 清洗 4. 格式化 模型构建 1.
2021-11-30 18:32:24 244KB ens fl flow
1
波士顿房价数据EXCEL
2021-11-28 15:30:17 56KB 机器学习
1