这是我的学士论文。 主要用于欧洲的车牌。 训练集的照片主要是在汽车尾部和头部的停车场拍摄的。 因为神经网络的训练是EXTREMELY TARGETED,例如:如果你的测试照片和我的训练集(包括分辨率、场景、颜色)有很大的差异,就会导致识别不准确。 在这种情况下,您可以使用文件中的两个训练函数来训练您需要识别的场景。 由于我个人能力,没有大数据集提供给我,我的训练数据也只有几百张图片。 如果您有更多的训练数据,则可以获得更好的结果。
车牌识别由三部分组成: 1.图像预处理2.车牌定位3.字符识别
定位模块: 主要思想是首先在适当的图像预处理(形态学处理)后搜索8个连通区域。 如果这一步成功,8-connectivty 捕获的区域通常比神经网络锁定的区域更准确。 车牌和类似标志具有不同于周边区域的明显区域特征:车牌与其周边区域没有通过共同特征连接。 整个预处理图像被二值化并存储在逻辑矩阵中
2022-05-15 14:36:20
82.97MB
matlab
1