一元线性回归数据集
2023-04-05 12:30:22 12KB 一元线性回归数据集
1
以甘肃白龙江流域1977, 2002,2010年Landsat影像和30m分辨率DEM为数据源,基于GIS空间分析技术,建立了白龙江流域土地利用数据库并生成了坡度和地形位指数图,然后将高程、坡度和地形位梯度图分别与土地利用数据叠加,对1977-2010年不同高程带、坡度带和地形位梯度上土地利用变化空间特征进行定量分析。结果表明:近30多年来,在各高程和坡度带上,白龙江流域的建设用地向更高高程和陡坡方向扩展;陡坡耕地面积出现了从增加到减少的逆转;林地变化则相反;受人类干扰程度的强烈影响,草地、水域和未利用地
2023-04-02 17:59:59 775KB 自然科学 论文
1
为了提高视觉测量系统的自动化水平和测量精度,提出了一种结合模板匹配和梯度峰值的对角标志自动提取方法。使用旋转不变模板匹配方法得到原始图像与标准模板的相关系数矩阵,通过两次阈值筛选获取标志点候选位置。根据两条直线相交于标志中心处以及中心处灰度梯度存在多个峰值的特性,剔除非合作标志点,得到对角标志点初始坐标。通过生成对角标志理想相关模板,利用相关系数拟合极值法进行亚像素定位。实验结果表明,该方法可以正确提取复杂环境下对角标志或棋盘格图像中的角点,而且需要人工调节的参数少、稳健性强、定位精度高且通用性好,可应用于工程实践中环境光源变化较大的测量场合。
2023-04-02 12:21:12 8.49MB 机器视觉 对角标志 自动提取 梯度峰值
1
传统核窗宽固定的mean shift跟踪算法不能很好地对尺寸变化的目标进行有效的跟踪。在结合增量试探法和梯度方向检测的基础上,提出了一种适应带宽的mean shift目标跟踪算法。算法能够对逐渐放大和逐渐缩小的目标都能够进行有效的跟踪,解决了增量试探法难以很好地对放大目标进行自适应带宽跟踪的问题,提高了自适应带宽跟踪的准确性。两段不同场景下的运动目标跟踪实验,证实了该算法的有效性。
2023-03-21 01:04:11 835KB 均值漂移 自适应带宽 增量试探
1
该文献详细阐述了复数一阶梯度、及二阶梯度的概念,
2023-03-20 19:05:30 226KB 复数 梯度
1
该代码使用来自社区大学的数据集,其中包含大量噪音。 由于数据集中的噪声,代码是一个很好的例子,有时线性回归不是很有用,但它是一个基线分类模型。 我确保它不会为我使用的数据集过度拟合或欠拟合数据。 根据正在使用的数据集,需要增加或减少 theta 参数,并且还必须调整参数的多项式性质。 这个程序的想法是它很好地演示了梯度下降,并且在分类方面做得很好。
2023-03-19 17:46:06 2KB matlab
1
AI,ML,gradient descent,paper,matlab AI,ML,gradient descent,paper,matlab
2023-03-19 16:40:53 1.16MB gradient descent
1
随机梯度下降法+matlab
2023-03-14 22:52:16 336B 随机梯度下降法 matlab
1
为了提高图像分割的速度和精度,提出了一种新的基于ChanVese水平集模型(CV模型)的梯度加速分割模型。首先,在CV模型的能量函数中加入一个内部能量项,抵消演化过程中水平集函数和符号距离函数的偏差,从而消除分割中周期性重新初始化的过程;其次,提出了梯度加速项,通过感兴趣区域的图像特征,快速得到该区域的边界,且能够提高弱边界的分割精度。实验证明,提出的方法不仅能够加速特定区域的分割、提高分割精度,还能保持分割过程的稳定性。
1
将自适应梯度算法(Adagrad)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中train.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1