linux命令,包括系统信息 、文件和目录 、挂载一个文件系统 、 磁盘空间 、用户和群组、打包和压缩文件 、RPM 包等的操作
2024-07-10 11:57:10 24KB linux 操作系统
1
Windows 和 Linux版本libxl库都能够使用,1积分。
2024-07-09 19:03:05 19.04MB 操作系统 Windows
1
操作系统是计算机科学的基础,Linux作为其中的一个重要分支,因其开源、免费、稳定和高效的特点,在全球范围内被广泛应用,尤其在服务器、嵌入式系统以及云计算等领域。本篇内容主要基于《操作系统原理及应用(Linux)》-王红的PPT,深入浅出地探讨Linux操作系统的核心概念和实际应用。 我们需要理解操作系统的定义与功能。操作系统是计算机系统中的核心软件,它负责管理硬件资源,为用户提供友好的接口,并协调各个程序的执行。Linux操作系统是基于Unix的设计理念,提供了一个命令行界面和图形用户界面,让用户可以方便地与计算机交互。 在Linux系统中,内核是核心部分,它负责内存管理、进程调度、设备驱动、文件系统等关键任务。内核通过系统调用接口为用户空间的应用程序提供服务。例如,进程管理涉及进程创建、撤销、同步和通信;内存管理则包括虚拟内存、页面交换和内存分配策略等。 文件系统是Linux中另一大关键模块,它负责组织和存储数据。Linux支持多种文件系统类型,如EXT4、XFS、Btrfs等,每种都有其特点和适用场景。文件系统提供了目录结构和权限控制,确保数据的安全性和有序性。 在Linux中,用户权限分为三种:读、写和执行,通过用户和组的概念来实现对资源的访问控制。此外,Linux还引入了sudo命令,允许普通用户以管理员权限执行特定命令,增强了系统的安全性。 命令行是Linux的一大特色,通过各种命令,用户可以进行文件操作、系统管理、网络配置等。常见的命令如ls、cd、mkdir、rm、cp、mv等,熟练掌握这些命令能极大地提高工作效率。 Linux还拥有丰富的开发工具和编译环境,如GCC、Make、Git等,为软件开发提供了便利。同时,Linux下的软件包管理系统(如apt、yum)使得软件安装和更新变得简单易行。 在实际应用中,Linux常用于服务器部署,如Web服务器、数据库服务器、邮件服务器等,其稳定性、安全性和性能得到了广泛认可。另外,Linux也是嵌入式系统开发的首选平台,如智能家居、自动驾驶汽车等领域的设备。 《操作系统原理及应用(Linux)》这一课程深入讲解了Linux的基本原理和实际应用,涵盖了从内核机制到用户接口的全面内容,对于理解Linux操作系统和提升相关技能具有极大的帮助。通过学习,不仅可以提升个人技术能力,也有助于解决实际工作中的问题,进一步推动技术发展。
2024-07-06 18:48:13 430KB Linux
1
实验五——单周期MIPS处理器的设计与实现1主要涵盖了MIPS处理器的基础知识,单周期处理器的设计方法以及如何通过增量方式实现这一处理器。该实验旨在帮助学生熟悉MIPS处理器的常用指令集,掌握单周期处理器的数据通路和控制单元设计,以及进行功能验证。 MIPS处理器是一种流行的精简指令集计算机(RISC)架构,具有简洁高效的特点。在实验中,学生需要掌握至少10条MIPS指令,例如 lw(load word,从内存加载数据到寄存器)、sw(store word,将寄存器数据存储到内存)、lui(load upper immediate,加载立即数的高16位)、ori(or immediate,或操作立即数)、addiu(add immediate unsigned,无符号加立即数)、addu(add unsigned,无符号加法)、slt(set less than,设置小于标志)、beq(branch if equal,等于则跳转)、bne(branch if not equal,不等于则跳转)和j(jump,无条件跳转)。 单周期处理器设计中,数据通路是处理器的核心部分,它处理指令和数据,包括ALU(算术逻辑单元)、寄存器、存储器访问等。控制单元则负责解读当前指令,生成必要的控制信号以驱动数据通路。在这个实验中,数据通路采用32位宽度,以匹配MIPS的32位指令集。寄存器文件由32个32位寄存器构成,支持异步读/同步写操作。指令存储器和数据存储器分别使用ROM和RAM,前者异步读取指令,后者则采用异步读/同步写模式。 实验环境包括Windows 10或Ubuntu 16.04操作系统,以及Xilinx Vivado 2018.2开发工具,利用FPGA(现场可编程门阵列)硬件云平台进行实际实现。在设计过程中,学生需要按照增量方式进行,这意味着他们将逐步完善处理器的设计,从基础组件开始,如程序计数器(PC)、寄存器文件、指令存储器和数据存储器,然后添加必要的组合逻辑来实现指令解码和执行。 实验内容包括设计一个名为MiniMIPS32的处理器,它具备32位数据通路,小端模式,支持上述10条MIPS指令。处理器的寄存器文件遵循异步读/同步写模式,且采用哈佛结构,即独立的指令存储器和数据存储器,指令存储器用ROM实现,数据存储器用RAM实现。设计的顶层模块MiniMIPS32_SYS连接了各个子模块,包括输入输出端口,以实现与外部存储器的通信。 这个实验是一个全面的实践项目,涵盖了处理器设计的多个关键方面,包括硬件描述语言(如SystemVerilog HDL)、微体系结构和逻辑控制,旨在深化学生对MIPS处理器工作原理的理解,并提升他们在FPGA开发中的技能。通过这个实验,学生将能够亲手构建一个基本的MIPS处理器,并通过测试用例验证其正确性。
2024-07-06 15:02:50 652KB 测试用例 操作系统 windows ubuntu
1
所用控制板:STM32F103RET6,STM32标准库 加FreeRTOS操作系统 移植canfestival协议栈从机,可实现心跳包报文的5s定时发送,若需添加sdo,pdo报文,在对象字典相关文件内,照例添加即可。
2024-07-05 16:09:54 62.24MB stm32 操作系统 can
1
操作系统是计算机系统的核心组成部分,它的主要任务是管理和协调计算机硬件及软件资源,为用户提供便捷、高效的服务。这篇复习笔记主要涵盖了操作系统的一些基础概念和关键功能,适合大学生期末复习使用。 操作系统的目标主要包括方便性、有效性、可扩充性和开放性。方便性体现在操作系统通过将高级程序语言转化为机器语言,使得计算机易于使用。有效性则关注提高系统资源利用率和系统吞吐率,这是操作系统最重要的目标。可扩充性意味着操作系统应随着技术的发展不断升级和扩展。开放性则要求操作系统遵循国际标准,以便与不同的软硬件系统兼容。 操作系统的发展历程从早期的人工操作到批处理系统,再到单道和多道批处理系统,以及分时系统和实时系统。批处理系统提高了资源利用率,而分时系统使得多个用户可以同时交互使用计算机。实时系统则强调在规定的时间内完成任务,以满足实时性的需求。 操作系统的四个基本特性是并发性、共享性、虚拟性和异步性。并发性允许多个进程在宏观上看似同时执行,但实际上在微观层面上是交替进行的。共享性是指资源可以被多个进程共同使用,这分为互斥共享和同时访问两种方式。虚拟性通过技术手段将单一资源虚拟化为多个逻辑资源。异步性反映了进程执行的不可预测性,进程可能会因为等待资源而暂停。 操作系统的主要功能包括处理机管理(进程控制、进程同步、进程通信和调度)、存储器管理(内存分配、保护、地址映射和扩充)、设备管理(缓冲、分配和处理)以及文件管理(存储空间、目录、读/写管理和保护)。此外,操作系统还提供了用户接口和程序接口作为与用户交互的桥梁。 在第二章中,前趋图用于描述程序的执行顺序和并发执行的情况。顺序执行时,程序具有顺序性、封闭性和可再现性,而在并发执行时,这些特性会受到干扰,表现为间断性、失去封闭性和不可再现性。进程具有动态性、并发性、独立性和异步性等特征。进程的状态转换是通过进程控制块(PCB)进行管理的,PCB包含了进程的重要信息,如标识符、调度信息和控制信息。操作系统内核负责进程控制和其他核心功能,如中断处理、时钟管理和原语操作,以及资源管理。 进程同步是解决异步问题的关键,通过临界区、同步机制(如信号量)和原语来实现。信号量机制提供了wait和signal(或P、V操作)原语,用于申请和释放资源,确保并发执行的进程之间有序共享资源。原语是不可中断的操作,保证了操作的原子性。 这份复习笔记涵盖了操作系统的基本概念、发展、功能以及进程管理的核心内容,对于理解和掌握操作系统的工作原理十分有帮助。通过深入学习,可以更好地理解和应用操作系统,提高计算机系统的使用效率。
2024-07-04 21:34:32 1.17MB 操作系统
1
用可视化变成工具编写一个模拟SPOOLING假脱机输入输出技术的程序,所以我要设计一个SP00LING输出进程和两个请求输出的用户进程,以及一个SP00LING输出服务程序。当请求输出的用户进程希望输出一系列信息时,调用输出服务程序,由输出服务程序将该信息送入输出井。待遇到一个输出结束标志时,表示进程该次的输出文件输出结束。之后,申请一个输出请求块(用来记录请求输出的用户进程的名字、信息在输出井中的位置、要输出信息的长度等),等待SP00LING进程进行输出。SP00LING输出进程工作时,根据请求块记录的各进程要输出的信息,将其实际输出到打印机或显示器。基于此处的需求,选定使用Java来编写此程序,用多行文本框来模拟打印机用以显示输出结果。
2024-07-04 18:46:27 9KB 操作系统
1
中科方德桌面操作系统V4.0(X86)镜像文件和安装手册:NFSDesktop-4.0-G006-20211018.01-amd64-JRXC.iso
1
《嵌入式实时操作系统 uC/OS-II》是由邵贝贝翻译的经典著作,该书深入浅出地介绍了嵌入式领域中的实时操作系统——uC/OS-II。作为一个专业的IT知识资源,这本书是学习uC/OS-II不可或缺的参考资料。由于网络上流传的版本常有缺页问题,这份超星版的完整性尤为珍贵。 uC/OS-II是一种小巧而高效的实时操作系统内核,专为微控制器和嵌入式系统设计。其主要特点包括抢占式多任务调度、可移植性、确定性和内存管理等。下面我们将详细探讨这些知识点: 1. **抢占式多任务调度**:uC/OS-II支持多个任务并发执行,每个任务都有自己的优先级。当高优先级任务准备就绪时,可以立即中断当前执行的任务,实现任务间的快速切换,确保系统的实时响应。 2. **任务管理**:uC/OS-II允许创建、删除、挂起、恢复和修改任务的优先级。任务之间的切换通过操作系统内核透明地完成,开发者无需关心底层细节。 3. **内存管理**:uC/OS-II提供了一套完整的内存分配和释放机制,包括堆内存管理和静态内存池管理。这使得应用程序可以根据需求动态地分配和释放内存,同时避免内存泄漏。 4. **信号量与互斥量**:用于实现任务间的同步和资源独占。信号量可以用于计数,而互斥量则用于保护临界区,防止多个任务同时访问同一资源。 5. **消息队列**:作为任务间通信的重要手段,消息队列可以存储一定数量的消息,任务可以发送消息到队列,其他任务则可以从队列中接收消息。 6. **时间管理**:uC/OS-II提供了延时和周期性唤醒的功能,支持定时器和超时机制,这对于实时系统至关重要。 7. **可移植性**:uC/OS-II的源代码结构清晰,遵循特定的硬件无关性设计原则,可以在多种处理器架构上运行,适应广泛的嵌入式平台。 压缩包中的文件25_26.rar、25_27.rar和25_28.rar可能分别涵盖了uC/OS-II的不同章节或主题,比如任务调度算法的实现、内存管理策略、信号量和消息队列的使用示例等。通过学习这些内容,读者可以逐步掌握如何在实际项目中运用uC/OS-II构建高效稳定的嵌入式系统。 《嵌入式实时操作系统 uC/OS-II》是深入理解和应用嵌入式实时操作系统的宝贵教材,对于想要从事或正在从事嵌入式开发的工程师来说,这本书无疑是一份不可多得的学习资料。
2024-07-02 19:30:53 15MB uC/OS-II
1
Linux内核设计的艺术+图解Linux操作系统架构设计与实现原理
2024-07-02 10:44:26 41.13MB linux
1